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Abstract. We introduce a novel spiking neural network model for learning 
distributed internal representations from data in an unsupervised procedure. We 
achieved this by transforming the non-spiking feedforward Bayesian 
Confidence Propagation Neural Network (BCPNN) model, employing an 
online correlation-based Hebbian-Bayesian learning and rewiring mechanism, 
shown previously to perform representation learning, into a spiking neural 
network with Poisson statistics and low firing rate comparable to in vivo 
cortical pyramidal neurons. We evaluated the representations learned by our 
spiking model using a linear classifier and show performance close to the non-
spiking BCPNN, and competitive with other Hebbian-based spiking networks 
when trained on MNIST and F-MNIST machine learning benchmarks. 

1 Introduction 

The success of deep learning (DL) in solving various real-world pattern recognition 
benchmarks has shown the importance of building large-scale artificial neural networks 
(ANNs) with the ability to learn distributed internal representations from real-world 
data. One of the emerging concerns however is the energy footprint of heavy 
computations involved in training large ANN architectures. In response to this 
challenge there has been growing interest in neuromorphic approaches that build on 
more biologically plausible spiking neural networks (SNNs). This new generation of 
neural network models holds a promise for energy-efficient neuromorphic hardware 
that can handle real-time data streams efficiently with sparse and asynchronous event-
based communication [1]. It is therefore imperative that, in parallel to DL development, 
we develop SNNs that can learn representations from real-world data. Building such 
SNN models has been typically addressed either by converting a traditional non-spiking 
ANN trained with gradient descent learning into a SNN, or by modifying backprop-
based gradient descent algorithms to accommodate spiking neurons [1,2]. Since the 
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current approaches do not fully leverage the biological nature of the learning principles 
in SNNs, there is a motivated concern that full potential of SNNs and their 
neuromorphic implementations may not be harnessed. 
 
Our philosophy for SNN design is steeped into the biological brain’s inspirations and 
hence we aim to develop a biologically constrained SNN model that performs 
unsupervised representation learning based on Hebbian learning principles. For this, 
we derive our model from an abstract (non-spiking) brain-like BCPNN architecture, 
previously shown to perform representation learning by solely using Hebbian learning 
(synaptic plasticity) and Hebbian rewiring (structural plasticity) mechanisms [5]. 
Crucially, we employ on-line Hebbian learning directly in the spiking domain. To this 
end, we interpret spikes as stochastic independent samples from a Poisson distribution, 
where the underlying firing rates are computed as probabilities from the BCPNN 
model. This is motivated from the observations that in vivo cortical pyramidal neurons 
show reliable firing rate whereas the timing of spikes is highly irregular and the 
corresponding inter-spike intervals closely resembles a Poisson distribution [3,4]. Our 
main contribution is to show that the BCPNN model can be converted to a SNN 
preserving the biological details with minimal compromise on performance. The 
spiking statistics in our model reach a maximum firing rate of around 50 spikes/s, 
matching the sparse firing of in vivo cortical pyramidal neurons. We evaluated the 
internal representation of the model by means of a linear classifier and compared it with 
the corresponding non-spiking model as well as other SNNs with Hebbian learning.  

2 Model description 

We summarize key details of the model relevant to the spiking version and refer to 
previous works on the feedforward non-spiking BCPNN model for full details [5].  
 
Modular network design: Our spiking BCPNN model consists of one spiking input 
layer and one spiking hidden layer. The layer architecture is derived from the columnar 
organization of the mammalian neocortex. Each layer in our network model is 
composed of many identical hypercolumns modules, each of which in turn comprises 
many neuron units (referred to as minicolumns) sharing the same receptive field. 
 
Localized learning: The learning mechanism is local, online, and correlation-based 
Hebbian-Bayesian synaptic plasticity where each synapse accumulates short and long-
term traces of pre-, post-, and joint activities. From the pre- and post-synaptic spikes at 
time 𝑡, 𝑆! , 𝑆" ∈ {0, 1}, we compute 𝑍-traces, 𝑍! and 𝑍", as a form of short-term filtering 
(𝜏# ~ few milliseconds) providing a coincidence detection window between pre- and 
post-synaptic spikes for subsequent LTP/LTD induction (Eq. 1). The 𝑍-traces are 
further transformed into 𝑃-traces, 𝑃! , 𝑃" , and 𝑃!" , with long time-constants (𝜏$ ~ seconds 
to hours) reflecting LTP/LTD (Long-term potentiation and depression) synaptic 
processes (Eq. 2). The 𝑃-traces are finally transformed to bias and weight parameter of 
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the synapse corresponding to terms in ANNs (Eq. 3). All the spike and trace variables 
are time dependent (time index is dropped for the notation brevity). 

𝜏#
𝑑𝑍!
𝑑𝑡 =

𝜏#
∆𝑡 𝑆! − 𝑍! , 𝜏#

𝑑𝑍"
𝑑𝑡 =

𝜏#
∆𝑡 𝑆" − 𝑍"

(1) 

𝜏$ 	
𝑑𝑃!
𝑑𝑡 = 𝑍! − 𝑃! , 𝜏$ 	

𝑑𝑃!"
𝑑𝑡 = 𝑍! 	𝑍" − 𝑃!" , 𝜏$ 	

𝑑𝑃"
𝑑𝑡 = 𝑍" − 𝑃" (2) 

𝑏" = log 	𝑃" , 𝑤!" = log 	
𝑃!"
𝑃! 	𝑃"

(3) 

Localized rewiring: The synaptic rewiring mechanism adaptively finds efficient 
sparse connectivity between the layers, mimicking structural plasticity in the brain [5].  
This mechanism uses the 𝑃-traces available at each synapse to maximize a synaptic 
“usage” score and updates the sparse binary connectivity matrix 𝑐!" accordingly. 
 
Neuronal activation: The total input 𝐼" for neuron 𝑗 is updated to be weighted sum of 
incoming spikes with the time-constant 𝜏# (acting here as the depolarization time 
constant) (Eq. 4). The activation of the neuron, 𝜋", is computed as a softmax function 
of the input 𝐼" (Eq. 5), which induces a soft-winner-takes-all competition between the 
minicolumn units within each hypercolumn module. The output of the softmax function 
reflects the posterior belief probability of the minicolumn unit according to the BCPNN 
formalism [5]. In the non-spiking (rate-based) BCPNN model, this activation 𝜋" acts as 
the firing rate and can be directly communicated as the neuronal signal. For SNNs, we 
independently sample binary values from this 𝜋" activation probability scaled by the 
maximum firing rate 𝑓%&' for each time step (Eq. 6). Note that when 𝑓%&' = 1000 
spikes/s (and ∆𝑡 = 1ms), the spike generation process from Eq. 6 is simply a stochastic 
sampling of the underlying firing rate probability and setting 𝑓%&' < 1/∆𝑡 linearly 
scales the activation probability to the maximum firing rate. In both learning (Eq. 1) 
and synaptic integration (Eq. 4) steps, we scaled the binary spiking signal by 𝜏# ∆𝑡⁄  as 
this renders the filtered spike statistics of model to be equivalent to the rate model. 

𝜏#
𝑑𝐼"
𝑑𝑡 = 𝑏" +

𝜏#
∆𝑡C	𝑆! 	𝑤!" 	𝑐!"

(!

!)*

− 𝐼" , (4) 

 

𝜋" =	
exp	(𝐼")

∑ exp	(𝐼+),-
+).

, (5) 

 
𝑆" 	~	𝑃(spike	between	t	and	t + ∆𝑡) = 𝜋" 	𝑓%&'	∆𝑡 (6) 

3 Experiments 

3.1 Comparison of classification performance 

To benchmark our spiking BCPNN model on the MNIST (hand-written digit images) 
and F-MNIST (fashion apparel images) datasets, we first trained it in a purely 
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unsupervised manner (representation learning) and then used a linear classifier (cross 
entropy loss, SGD with Adam optimizer, 100 training epochs) to predict class labels (𝑛 
= 3 randomized runs, all parameters are listed in Table 1). Table 2 shows that the 
classification accuracy of our model is competitive with the non-spiking BCPNN as 
well as other SNNs with Hebbian-like plasticity (STDP and its variants). 
 

Type Parameter Value Description 
Synaptic 𝜏! 20 ms Short-term filtering time constant 

𝜏" 5 s Long-term learning time constant 
𝑝#$%% 10 % Sparse connectivity between layers 

Neuronal 𝐻& , 𝑀& 784, 2 N:o input layer hypercolumns & minicolumns  
𝐻', 𝑀' 100, 100 N:o hidden layer hypercolumns & minicolumns  
𝑓()* 50 spikes/s Maximum firing rate 

Training 
protocol 

∆𝑡 1 ms Simulation time step 
𝑇")+ 200 ms Time period for each pattern  
𝑇,)" 100 ms Time period of gap between patterns 
𝑁-"$#' 10 N:o of training epochs 
𝑁")+ 60000 N:o of training patterns 

Table 1: Network parameters. 

Model Activity Plasticity MNIST F-MNIST 
BCPNN (this work) spiking BCPNN 97.7 ± 0.09 83.8 ± 0.12 
BCPNN rate BCPNN 98.6 ± 0.08 89.9 ± 0.09 
Diehl & Cook, 2015 [6] spiking STDP 95.0 -- 
Kheradpisheh et al., 2018 [7] spiking STDP 98.4 -- 
Mozafari et al., 2019 [8] spiking STDP-R 97.2 -- 
Hao et al., 2020 [9] spiking sym-STDP 96.7 85.3 
Dong et al., 2023 [10] spiking STB-STDP 97.9 87.0 

Table 2: Linear classification accuracy (%). 

3.2 Spiking BCPNN with sparse firing learns distributed representations 

In Fig. 1A we plotted the neuronal support, i.e., input, 𝐼", superimposed with the spiking 
output, 𝑆", for 30 randomly selected neurons within a single hypercolumn module after 
training the network on MNIST data (for visualization, we offset each neuron’s input 
by 50mV vertically, scaled them to be in the range -80mV to -55mV and added a spike 
event of 40 mV) and observed sparse spiking with occasional bursts.  In Fig. 1B we 
plotted the firing rate of each neuron in a single randomly chosen hypercolumn module 
by convolving the spike train with a Gaussian kernel (𝜎 = 50ms). We see that most 
neurons have low firing rates (~ 2 spikes/s), with a very few (typically one) neurons 
showing high level of activity (~ 50 spikes/s) within the duration of a stimulus pattern 
presentation (gray vertical bars) due to the local competition within the hypercolumn. 
We plotted the receptive fields for three hypercolumns and the filters learned by six 
minicolumns each (randomly chosen) in Fig. 1C. They provide a good qualitative match 
to the previously published results of the non-spiking BCPNN model [5]. 
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Figure 1 A. Neuronal support recorded after training for a time period of 6s across 30 randomly selected 
neurons shows sparse spiking activity. B. Firing rate computed from all (𝑀!=100) neurons within one 
hypercolumn. For the duration of pattern presentations (gray vertical bars, 𝑇"#$ = 200ms), mostly a single 
neuron shows a high firing rate while the rest are at a baseline firing rate. C. Local receptive fields are formed 
from randomly initialized connections through the rewiring mechanism, and individual minicolumns learn 
filters within their receptive field resembling orientation edge detectors. 

3.3  Filtering enables spiking models to approximate the non-spiking model 

We studied the effects of short-term 
filtering (𝑍-traces) in terms of 
classification performance (Fig. 2). We 
ran our experiments by training on a 
reduced version of MNIST dataset with 
1000 training and 1000 test patterns while 
varying 𝜏# and 𝑓%&' (all other parameters 
same as in Table 1). For biologically 
realistic values of 𝑓%&', like 50 spikes/s, 
performance with 𝜏# ≤	10ms is very low 
(𝜏# = 1ms is effectively no filtering). This is because pre- and post- synaptic spikes are 
expected to coincide within this time-window for learning to occur, whereas spikes are 
generated sparsely and irregularly from a Poisson distribution. However, for 𝜏#	~ 50ms, 
the performance closely approximates the non-spiking model since this time window is 
sufficient to expect pre- and post-synaptic spikes to coincide and be associated. For 
𝑓%&' > 500Hz (non-biological case), accuracy is high for 𝜏# over a wider range since 
the spikes are dense samples of the underlying neuronal activation and short-term 
filtering is not necessarily helpful. All models irrespective of 𝑓%&' drop sharply in 
performance after 𝜏# > 100ms, very likely because the temporal window provided is 
too long compared to the presentation time of each pattern (𝑇$&/ + 𝑇0&$ = 300ms) and 
the learning wrongly associates spikes of a pattern with spikes from previous patterns. 

A. B.

C.
rewiring

hypercolumn 

minicolumn

Figure 2: Effect of short-term filtering on 
classification performance. 
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4 Conclusion 

We have demonstrated that our spiking BCPNN model can learn internal 
representations, preserving the learning and rewiring mechanisms introduced in the 
non-spiking BCPNN model, offering competitive classification performance. Our 
Poisson spike generation mechanism recapitulates in vivo irregular cortical pyramidal 
spiking patterns with realistic firing rates. We suggest that it is the Hebbian plasticity 
mechanism that provides a robust learning algorithm tolerating the highly irregular 
sparse spiking. This is in stark contrast to backprop-based algorithms where it is not 
straightforward to accommodate spiking neurons. We found that short-term filtering 
(𝑍-traces) was crucial for this process. The time constants we found to work best (𝜏#	~ 
50ms) roughly match the dendritic depolarization time constant (paralleling the 
integration step in Eq. 4), and the NMDA-dependent Ca2+ influx required for synaptic 
plasticity (learning step in Eq. 1).  
 
Our scaling experiments (not shown) suggested that the network scales well in terms of 
performance although the running time is 100x slower compared to the non-spiking 
model since the timestep needs to be around 1ms (simulations took ~10 hours on 
custom CUDA code running on A100 GPUs). More efficient software and custom 
hardware implementation can make large-scale SNN simulations more efficient. 
Another direction of interest is in developing a more complex network architecture that 
combines recurrent attractors implementing associative memory with hierarchical 
representation learning (unsupervised) networks. 
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