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Abstract. Operations at extremely high temperatures can lead to vari-
ous malfunctions in Concentrated Solar Power (CSP) plants, emphasizing
the need for predictive maintenance (PdM). We study PdM as an anomaly
detection (AD) problem from irregular image sequences, which represent
the minute-by-minute solar receiver’s surface temperature from a CSP
plant. Contrary to standard benchmark image datasets in AD research,
our data shows distinct characteristics such as non-stationarity, tempo-
ral dependence, and irregular sampling, which are unaddressed by current
image-based AD techniques. Therefore, we introduce a forecast-based AD
method to address these characteristics, drawing inspiration from irregular
sequence modelling. The results show that the proposed method outper-
forms classical image-based AD methods on our dataset.

1 Introduction

There has been a growing focus on renewable energy sources to counteract the
devastating effects of climate change. A key challenge in adapting renewable
energy is generation on demand. With the help of CSP plants, power sectors are
utilizing Thermal Energy Storage (TES) as a solution to this challenge. CSP
plants accumulate energy by using arrays of mirrors to concentrate sunlight onto
solar receivers placed on top of solar towers, and TES temporarily stores the
energy by heating or cooling a storage medium such as water or molten salt.
However, due to operation in extreme temperatures, the solar receivers are im-
pacted in multiple ways, such as deformation, corrosion of the heat exchanger
tubes, and freezing of the medium blocking the heat exchanger tubes. Therefore,
CSP plants require close monitoring to ensure uninterrupted power generation.

PdM refers to techniques that estimate the condition of a machine in-service to
predict necessary repairs. We reduce PdM in CSP plants to an AD problem on
the solar receiver dataset (see Section 2). AD is defined as the process of detect-
ing rare data that are different from the normal behaviour of the data set [1].
Through exploratory data analysis, we identified some key characteristics of the
data from the CSP plants, namely non-stationarity, temporal dependence and
irregular sampling. These characteristics distinguish our data from the classical
image benchmark datasets used in the AD literature and need to be addressed
for an effective PdM.

∗This work is a part of the FLARACC research project, a MecaTech Cluster program
funded by the Walloon Region, Belgium.

635

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



To address the characteristics mentioned above of the data, we propose a forecast-
based AD [2] method addressing the challenges in the context of PdM of CSP
plants drawing inspiration from research on irregular sequence modelling. Fur-
thermore, we compare the proposed method with classical image-based anomaly
detection methods.

2 Solar receiver dataset and challenges

The solar receiver consists of multiple solar panels. Each panel contains vertical
heat exchanger tubes through which the heat transfer medium flows, absorb-
ing the heat from the concentrated sun rays. The data1 is collected using In-
frared (IR) cameras placed at various locations of the solar receiver. IR cameras
recorded the solar receiver’s surface temperature, creating a heat profile rep-
resented by an “image” roughly at an interval of one minute. The unlabelled
dataset contains a heat profile which is a two-dimensional (2D) matrix of size
184× 608, and is accompanied by the timestamp when it was recorded. For the
sake of simplicity, we will use the terms heat profile and image interchangeably.
Under normal operating conditions, as the heat transfer medium flows from one
end of the panel to the other through the vertical tubes, its temperature rise
due to the heat from the concentrated sun rays. Thus, the surface temperature
recorded by the IR cameras is expected to have a smooth gradient in the same
direction as the flow of the medium. Based on this knowledge and following dis-
cussion with domain experts, a small subset of the dataset is manually labelled
for testing purposes. Examples of two normal and two anomalous samples, as
provided by the domain experts, are shown on the left and right of Figure 1a,
respectively. For example, in the anomalous sample on the top-right of the fig-
ure, we can observe a streak of high temperature, which is unexpected under
normal operating conditions.

Data characteristics. Through extensive data analysis, we identified the fol-
lowing characteristics:

C1. Non-stationarity. The distribution of image temperature changes over
time. Figure 1c shows the average of heat profiles recorded at various
points in time over a particular week. It can be observed that the data
exhibits daily seasonality.

C2. Temporal dependence. The heat profiles are highly dependent on recent
weather conditions, leading to interdependence on sequential images and
daily seasonal trends.

C3. Irregular sampling. The images are recorded in irregular time intervals.
Due to different factors such as equipment failure, and non-operational
periods of the CSP plant, there can be no recorded data for certain days.
Figure 1b shows the distribution of the inter-arrival times.

1The dataset used for this study is confidential and thus cannot be released publicly. Please
reach out to the authors for any clarification regarding the reported results.
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(a) Normal and anomaly examples (b) Histogram of inter-arrival times

(c) Mean of heat profiles recorded over a week

Fig. 1: Visualisation of different properties of the data

3 Anomaly detection methods

Consider an unlabelled dataset Du := {(xui , tui )}
nu
i=1 consisting of nu samples.

Each sample consists of an input xui ∈ X = Rd
+ where d = 184 × 608 is the

dimension of the input space. The corresponding timestamp tui is drawn from
T = R+, denoting the time when the sample xui was recorded. Given the
unlabelled dataset Du, our problem can be formulated as a unsupervised AD
problem. For evaluating the performance of all methods, an annotated dataset
Dv := {(xvi , tvi , yvi )}

nv
i=1 is kept aside consisting of nv samples. Each sample in

Dv also contains the ground truth yvi ∈ Y := {0, 1} corresponding to the input
xvi . The samples are labelled in consultation with the domain experts. Here
anomalous samples are labelled 1, and normal samples are labelled 0.

3.1 Image-based anomaly detection

Global models. We start by adopting methods from the extensive literature
on image AD, disregarding the temporal aspects of the dataset. Primarily, we
focus on deep learning-based methods, namely autoencoder and Deep Support
Vector Data Description (DeepSVDD) [3]. Deep methods have proven more
effective than shallow ones for image anomaly detection [1], leveraging deep
neural networks’ ability to extract representative features through multiple ab-
straction layers. This study considers both SoftBoundary and OneClass variants
of DeepSVDD, as proposed by Ruff et al. [3]. The objective is to learn a mapping
function Φ(·;W ) : X → F , using a deep neural network parameterized by W , to
map data samples x ∈ X to an output space F = Rp. In both DeepSVDD vari-
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ants, F has a significantly lower dimension than the input, i.e., p << d. Whereas
an autoencoder is trained with a reconstruction objective, and thus the input
and output space is the same, i.e. F = X . An anomaly score s(a) is computed
as the reconstruction error when using an autoencoder and as the distance from
the estimated hypersphere centre c ∈ F for both variants of DeepSVDD.

Hour-wise models. To address non-stationarity (C1), we further train individ-
ual models Φh(·;Wh) corresponding to each hour h ∈ {0, · · · , 23} of the day with
associated parameters Wh. For training Φh(·;Wh), a subset Du

h := {(xuk , tuk)}
nh

k=1

of the dataset Du is used such that tuk lies in the interval [h − 1, h + 1). The
number of samples in Du

h is denoted by nh. We consider both autoencoder and
DeepSVDD as the individual models in this setting. Given a new test sample

(xvk, t
v
k) we assign an anomaly score s

(a)
k using the model Φh corresponding to

the hour h closest to timestamp tvk.

3.2 Forecasting-based anomaly detection

To consider non-stationarity (C1) and temporal dependence (C2), we adopt
a forecasting-based AD method [4]. In this approach, a model is trained to
predict the next image in a sequence, and anomalies can be detected when
the trained model fails to predict the next image. In deciding whether an im-
age at time t is anomalous or normal, we consider the “context” (or history)
Hti = {(xui−k+1, t

u
i−k+1), · · · , (xui−1, t

u
i−1)} which is a sequence of k samples prior

to t. A key constraint in directly applying a sequence model is the irregularity in
the inter-arrival time (C3) between the i-th and (i− 1)-th sample τi = ti− ti−1.
To overcome this challenge, we draw inspiration from Neural Temporal Point
Processes. Firstly, inter-arrival time embedding ψi = fsin(τi) is obtained us-
ing a sinusoidal encoding function fsin(·) [5, Equation 65]. Secondly, we embed
each image xui as zi = Φe(x

u
i ;We), where Φe(·;We) is a deep neural network

with learnable parameter We. Then, zi is concatenated with the time embed-
ding ψi to obtain Sti = {[zi−k+1, ψi−k+1], · · · , [zi−1, ψi−1]} where [·, ·] denotes
concatenation. Sti is passed through the sequence model φ(·;Wc) for generating
the context ci = φ(Sti ;Wc), where Wc is the parameter of the sequence model.
To predict the next image x̂ui = Φd((ci, ψi);Wd) after an interval τi, a decoder
network is used with learnable parameters Wd.

After predicting an image x̂ui , the prediction error ξui = 1
MN

M∑
m=1

N∑
n=1

(x̂ui (m,n)−

xui (m,n)) is averaged over the image pixels at coordinates (m,n), where d =
MN . Given {ξu1 , · · · , ξunu

}, we model the distribution fξ(·) of mean prediction
errors by fitting a univariate Gaussian distribution and Kernel Density Esti-

mation (KDE). The anomaly scores s
(a)
i for the image xvi is then computed as

the negative likelihood of observing the associated error ξvi , given the estimated

distribution f̂ξ, i.e. s
(a)
i = −f̂ξ(ξvi ).
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4 Experiments

Training setup2. The solar receiver dataset contains images obtained over a
year starting from October. The unlabelled images from the first two months are
used for training, consisting of nu = 29, 186 samples. Additionally, nv = 1, 312
samples are randomly selected from the rest of the data and labelled manually
for testing purposes. We use the network architecture introduced in [3] for all
our models. We further modify the architectures by using an Average-Pooling
layer with a rectangular kernel of size 23× 8 as the first layer for dimensionality
reduction. For the forecast-based AD, we use an LSTM as the sequence model
with a context length k = 30. All the methods are trained for 200 epochs. We
use Adam with a learning rate 0.001 and weight decay 10−6. We compare the
Area under the Receiver Operating Characteristic Curve (AUC) of the methods.

Table 1: Experimental results

Method AUC
Autoencoder 0.03
DeepSVDD OneClass 0.51
DeepSVDD SoftBoundary 0.41
Hour-wise autoencoder 0.53± 0.24
Hour-wise DeepSVDD OneClass 0.48± 0.24
Hour-wise DeepSVDD SoftBoundary 0.49± 0.26
Forecasting model with gaussian 0.84
Forecasting model with KDE 0.86

Comparison of anomaly detection methods. The results from the above ex-
periments are summarized in Table 1. For hour-wise models, as we have different
models for each hour of the day, the mean of the AUC of all the models Φh(·,Wh)
and their standard deviations are reported. The standard deviations are high as
the available training sample is significantly smaller for some Φh(·,Wh). We can
observe that the hour-wise models perform better than their counterparts that
disregard the non-stationarity. By further considering the temporal dependence
along with non-stationarity in the data, the forecasting-based AD demonstrates
the best performance. The results thus support our reasoning and validate the
importance of incorporating the temporal dependence to learn effective repre-
sentations for anomaly detection in the solar receiver dataset.

Effect of context length k. We report the AD performance of the forecast-
based method with varying context lengths k in Figure 3. We observe a consid-
erable increase in AD performance with increasing context length. Additionally,
the performance is better when using KDE to estimate the distribution of mean
prediction errors for assigning anomaly scores.

2The year is not disclosed due to data confidentiality
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Fig. 2: Samples per hour-wise model Fig. 3: AUC vs context length

5 Conclusion

We addressed AD in irregular image sequences collected from IR cameras in a
CSP plant. Our data exhibits distinct traits differing from AD image benchmark
datasets such as MVTec [6] as evidenced by the underperformance of existing
image-based AD methods. To better capture the characteristics of our dataset,
we proposed a forecast-based AD model inspired by irregular sequence mod-
elling. Experimental results demonstrate that the proposed model significantly
improves AD performance as measured by the AUC. The results also showed the
significance of capturing temporal information, including inter-image temporal
relationships, as it holds valuable information for the AD task.
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