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Abstract. Ockham’s razor and the curse of dimensionality are two
founding principles in machine learning. First, simple models should be
preferred to complex ones, in order to prevent overfitting. Second, high-
dimensional spaces should be avoided, whenever possible, because learning
is easier in lower-dimensional spaces. These principles are often invoked to
justify methodological choices or to preprocess data. However, this paper
shows a counterexample where it is better to first learn a more complex
model in a higher-dimensional space, and then to go back to the lower-
dimensional space while dropping the additional complexity. Specifically,
experiments demonstrate that Gaussian mixtures models can be learned in
a higher-dimensional space and then marginalised to the target dimension-
ality to improve probability density estimation performances. The chosen
problem is deliberately simple to facilitate the analysis, but it opens the
way to similar work for more complex models and tasks.

1 Introduction

In machine learning, a common belief is that one should avoid to use complex
models (Ockham’s razor) and to work in high-dimensional spaces (curse of di-
mensionality [1, 2, 3]) as much as possible, to achieve better generalisation. This
paper argues that this is not necessarily true and proposes a methodology to take
advantage of high-dimensional data as an intermediary step.

Given a high-dimensional (HD) dataset DHD =
{
xHD
1 , . . . ,xHD

n

}
collected

with d > 1 features X1, . . . , Xd, let us assume that one would like to obtain a
model based on a subset of p of these features. For example, the dataset has
been collected with some features that are no longer available, the number of
considered features should remain low due to interpretablity requirements, one
is interested only in univariate analysis for domain-specific reasons, etc.

The common approach would be to directly learn a model from a low-
dimensional (LD) version of the dataset DLD =

{
xLD
1 , . . . ,xLD

n

}
with only p

features. The d− p remaining features are simply discarded. However, this pa-
per shows that they can be useful, in particular when the dataset is small. It
may be better in some cases to learn a complex model in a higher dimensional
space and then to go back to the lower dimensional space. The chosen problem
is deliberately simple to facilitate the analysis, but it opens the way to similar
work for more complex models and tasks. The main contribution is a new learn-
ing methodology based on the idea of consistency across dimensionalities and
that intuitively goes against Ockham’s razor and the curse of dimensionality.
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Fig. 1: Illustrative example with a 4-component GMM (see Section 3) that
generated 200 training instances with features X1 and X2. The true 2D distri-
bution is shown as a contour plot for X1 and X2 (1st plot), as well as the 2D
model p(x2D|θ2D) (2nd plot). Then, the red 1D model p(x1D|θ1D) and the blue
marginalisation p(x1D|θ2D ↓ 1D) of p(x2D|θ2D) are compared to the true green
1D model p(x1D|θ1D) for X1 (3rd and 4th plots) and X2 (5th and 6th plots).

The rest of this works is organised as follows. Section 2 introduces the pro-
posed methodology based on marginalisation, which it then instantiated to Gaus-
sian mixture models (GMMs) in Section 3. Section 4 describes the experiments
performed to show the added value of the proposed methodology and discusses
their results. Finally, Section 5 concludes and discusses future work.

2 Marginalisation for Consistency across Dimensionalities

This section proposes a new probabilistic methodology to learn LD models by
first learning HD models as an intermediate step. The idea can be adapted to
more general problems than density estimation, which is considered here.

2.1 Consistency with Respect to Marginalisation

The above problem can be tackled with a probabilistic generative model p(x|θ).
This model can be learned with parameters θHD and θLD in the HD or LD space
with d or p features, respectively. If enough data are available, one could expect
both HD and LD models to be consistent with respect to marginalisation, i.e.,

p(xLD|θLD) =

∫
xHD\LD

p(xHD|θHD)dxHD\LD, (1)

where xHD\LD are the d−p features that are discarded. However, in practice, this
is not the case, as shown in Figure 1 where the models learned from a dataset of
200 instances in 2D and 1D are inconsistent with respect to marginalisation. In
fact, if one denotes as θHD ↓LD the parameters of the HD model that is reduced
to LD

p(xLD|θHD ↓LD)
def
=

∫
xHD\LD

p(xHD|θHD)dxHD\LD, (2)

under the hypothesis that the marginalisation of p(x|θ) belongs to the same
model family, Figure 1 shows that p(xLD|θHD ↓LD) is closer to the true, unknown
distribution p(xLD) than p(xLD|θLD). In other words, in this synthetic example,
it is better to learn a more complex model in a high dimensional space first and
then to marginalise it to the lower dimensional space. This is due to the fact
that the modes of the distribution are easier to distinguish in two dimensions.
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2.2 The LiHDaM Methodology

Motivated by the illustrative example in Figure 1, the following methodology is
proposed. Given a dataset DHD with d dimensions and a task that requires to
learn a probabilistic model p(xLD|θLD) based on p < d dimensions, one should

1. learn a model p(xHD|θHD) in the d-dimensional space;

2. marginalise the model to reduce it to p dimensions;

3. use the new model p(xLD|θHD ↓LD) (and drop the d-dimensional one).

The rest of this paper instantiates this learn-in-high-dimension-and-marginalise
(LiHDaM) methodology to the particular case of Gaussian mixture models.

2.3 Related Work

The idea of working in a high-dimensional space is also exploited by support
vector machines (SVMs) [4] that rely on the kernel trick [5]. They build an
intermediate feature space whose dimensionality may even be infinite (e.g., with
the RBF kernel). The advantage is that classification becomes easier in the high-
dimensional feature space. However, even for SVMs, regularisation is necessary
to prevent overfitting and the model complexity is therefore restricted. Here, the
goal is explore whether the learning problem can be solved with a complex model
which is simplified afterwards by the marginalisation mechanism. The final
model lies in the LD space and all HD components are discarded. Experiments
in Section 4 show that it improves generalisation and metaparameter selection.

3 Illustrative Case: Gaussian mixture models

Gaussian mixture models (GMMs) are widely-used semi-parametric models for
density estimation. In hidden Markov models, they are often used to compute
emission probabilities when observations are too complex for simple Gaussian
distributions, like electrocardiogram (ECG) signals [6, 7]. The expression of the
probability density function (PDF) for a GMM with K components is

p
(
x
∣∣∣ {πk,µk,Σk}Kk=1

)
=

K∑
k=1

πkN (x|µk,Σk), (3)

where each component has a weight πk, a mean µk and a covariance matrix Σk.
Unfortunately, there exists no close-form solution to learn GMM parameters, but
the iterative expectation-maximisation (EM) algorithm [8] can be used. Until
convergence, the E step computes the membership γik of xi to the kth compo-
nent, then the M step estimates the parameters of each component as

πk =
1

n

n∑
i=1

γik µk =

∑n
i=1 γikxi∑n
i=1 γik

Σk =

∑n
i=1 γik (xi − µk)

T
(xi − µk)∑n

i=1 γik
. (4)

An interesting property of a GMM is that it can easily be marginalised: the
result is just another GMM with less dimensions and parameters. Unnecessary
components of µk and Σk just need to be dropped, while πk remains unaffected.
Interestingly, GMMs are easy to learn, to use and to interpret. For these reason,
this paper uses GMMs to assess the interest of the LiHDaM methodology.
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Fig. 2: Histogram of the differences between the loglikelihoods log p(D1D|θ1D)−
log p(D1D|θ2D ↓ 1D) computed on training (top) and test (bottom) samples, for
all the GMMs trained with n instances. The percentage shown is the proportion
of GMMs for which θ1D is better, i.e., log p(D1D|θ1D) > log p(D1D|θ2D ↓ 1D).

4 Validation of the LiHDaM Methodology

Experiments below assess the LiHDaM methodology and illustrate its key idea in
a visual way with a simple 2D problem. Future works will use real-world, higher-
dimensional data to further validate the benefits of model marginalisation.

4.1 Experimental Setup

For 100 repetitions, 2D isotropic GMMs with C ∈ {2, 4, 8} components were
created with random centers in [10, 10] × [10, 10] and width σ = 2. From each
GMM, (i) several training datasets with n ∈ {10 . . . 100} × C instances were
sampled, as well as (ii) a validation set half the size to select the best model
complexity and (iii) a test set of 10,000 instances to assess generalisation.

The above datasets are each declined in D2D (X1 and X2) and D1D (X1 only)
versions. The task is to train a 1D density estimation model for X1. GMMs
were trained with K ∈ {1 . . . 10} components, full covariance matrices and 100
parameter initialisations with k-means++ to obtain (i) p(x1D|θ1D) from D1D as
usual and (ii) p(x1D|θ2D ↓ 1D) from D2D following the LiHDaM methodology.

4.2 Experimental Results

First, Figure 2 shows that the standard model θ1D is almost always (±90%)
better on 1D training data, which is unsurprising since θ1D is directly optimised
on them. The marginalised model θ2D ↓ 1D is instead obtained from 2D training
data and is almost never (±2%) better on 1D training data. Such rare occur-
rences are likely due to convergence issues, as the loglikelihood is non-convex for
GMMs. On the contrary, and more interestingly, the marginalised model θ2D ↓ 1D

is most often (±90%) equal or better on 1D test data, i.e., it offers equal or better
generalisation. This is especially true when the number of instances n is small.
When it is not the case, the difference in favour of θ1D remains small.
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Fig. 3: Mean (plain) and 95% confidence intervals (dashed) of the difference in
test loglikelihood for θ2D ↓ 1D and θ1D, with different training set sizes. For each
plot, the number of GMM components K is set to the number of centers C.

Fig. 4: Probability density function of GMMs trained withK = C as in Figure 3,
with different training set sizes. The green dashed line is the true distribution,
whereas the red and blue plain lines correspond to θ1D and θ2D ↓ 1D, respectively.

Second, Figure 3 shows that the above conclusions are even stronger when
the number of components in the trained GMMs is equal to the number of
centers that generated data. In that case, LiHDaM is significantly better than
the traditional approach, in particular for small datasets. Figure 4 shows that
the marginalised model θ2D ↓ 1D is less likely to overfit than θ1D, suggesting that
LiHDaM has some kind of regularisation effect, in particular for small datasets.

Third, Figure 5 shows that similar results are obtained when the number of
components K is chosen so as to maximise the loglikelihood of the validation
set (in 1D for θ1D and in 2D for θ2D that is marginalised to θ2D ↓ 1D). However,
the difference is smaller than in Figure 3. Figure 5 also shows that the selected
value for K is more relevant with LiHDaM, i.e., closer to the true number of
components C. The marginalised model θ2D ↓ 1D can afford more complexity
with the same amount of training data, with less overfitting (see Figure 6).

5 Conclusion and Future Works

This paper is a first step towards better understanding when and why it may be
interesting to use higher dimensional and more complex models as an intermedi-
ate step. The LiHDaM approach relies on marginalisation and could be extended
to generative classification models. However, experiments will first be extended
in future work to assess whether LiHDaM works for complex, real-world datasets.
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Fig. 5: Mean (plain) and 95% confidence intervals (dashed) of the difference in
test loglikelihood (black, top) and of the number of components K (bottom) for
θ2D ↓ 1D (blue) and θ1D (red) when K is chosen with a validation set.

Fig. 6: Probability density function of GMMs trained with K chosen with a
validation set. The green dashed line is the true distribution, whereas the red
and blue plain lines correspond to θ1D and θ2D ↓ 1D, respectively.
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