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Abstract. Machine learning (ML) models often perform differently
under distribution shifts, in terms of utility, fairness, and other dimen-
sions. We propose the Adversarial Auditor for measuring the utility and
fairness performance of ML models under compound shifts of outcome
and protected attributes. We use Multi-Objective Bayesian Optimiza-
tion (MOBO) to account for multiple metrics and identify shifts where
model performance is extreme, both good and bad. Using two case stud-
ies, we show that MOBO performed better than random and grid-based
approaches in identifying scenarios by adversarially optimizing objectives,
highlighting the value of such an auditor for developing fair, accurate and
shift-robust models.

1 Introduction

As Machine Learning (ML) models are deployed in high-stakes domains, it is
crucial to test their behavior under distribution shifts, where the data distri-
bution during deployment may differ from the distribution of the training data
[1, 2]. Deploying models without properly understanding their behavior can lead
to unpredictable results. Ideally, model testing would include rigorous testing
under shifts to understand the ranges of model performance in terms of utility,
fairness, and other dimensions.

Thus, there is a need to identify distribution shifts in data where the ML
model performance is extreme, both good and bad, so the model developers can
understand their models better and re-train their models whenever needed. In
our previous work, we proposed a pipeline to evaluate bias mitigation algorithms
under shifts using a grid-based approach [3]. While being rigorous and flexible,
the pipeline is constrained to a grid of possible data shifts defined by the user
without considering extremes and in-between values. In this work, we propose
to address this problem using an Adversarial Auditor, which uses Multi Objec-
tive Bayesian Optimization (MOBO) [4, 5] to identify distribution shifts on a
continuous scale that lead to extreme performance in terms of multiple metrics,
by adversarially optimizing for multiple objectives. Such an analysis enables the
developers to develop fair, accurate and shift-robust models by highlighting sce-
narios for model improvement. Amongst the various types of distribution shifts
[6], we evaluate ML models under compound shifts by changing the proportions
of outcome and protected attribute. To highlight the efficacy of this auditor, we
present results across three MOBO algorithms on two objectives: (a) utility and
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Fig. 1: The Adversarial Auditor design where the utility and fairness scores are
the two objectives used for Multi-Objective Bayesian Optimization

(b) fairness. These results are compared with the grid-based approach [3] and a
randomization baseline.

2 Method

2.1 Auditor Design

Let us consider a dataset D = {X, Z,Y} where X is one or more features (such
as blood pressure level, county etc.), Z is a protected attribute (such as gender,
race etc.) and Y is the prediction variable being predicted. The dataset is split
into train and test data as shown by the auditor design in Figure 1. The train
data is then used for training a Machine Learning model M (e.g. Random Forest
Classifier, XGBoost, etc.) that will be evaluated by the auditor.

Let us consider the simple case where the output is binary, such that ¥ €
{0,1}, and the protected attribute is binary as well, Z € {0,1}. Using these
variables, we define the four groups (Z,Y) € {(0,0), (0,1), (1,0), (1,1)}. Let the
proportions of these groups be defined as Pyg, Po1, Pio, P11 (P), each ranging
between 0.05 to 0.95 to avoid very small groups. Thus, each distribution shift
(referred to as a “scenario”) is defined as a unique combination of these propor-
tions. The distribution shift is realized as a dataset by sampling from the test
data using the Data Sampler. We use a stratified sampling of the test data as
the Data Sampler.

The model M predicts on this shifted data and is then evaluated for utility u
and fairness f. The MOBO algorithm is then applied with the proportions P as
inputs and the u and f as objectives to identify new P values which maximize
these objectives. We use three algorithms: (a) gNParEGO, (b) gNEHVI and
(¢c) qEHVI [4, 5]. Note that as the default MOBO algorithm maximizes the
objectives (BoTorch library [7]), if we want to minimize an objective, we simply
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evaluate its negative. This process is repeated N times (we use N = 81 for a fair
comparison with the 81 grid-approach, see [3] and Section 2.3) and the results
are observed. This complete pipeline forms the Adversarial Auditor.

2.2 Evaluation and Comparison

We consider Balanced Accuracy (BA) as the utility metric u, which averages
the accuracy across the two classes of Y and thus, is more informative when
datasets are imbalanced. A higher score for BA is better (max 1.0). To evaluate
fairness f, we use the group fairness metric Equalized Odds [3, 8] which measures
equitable performance across groups as defined by the protected attribute (such
as Male-Female for gender, Black population-White population for race etc).
For Equalized Odds, lower values are better (min 0.0).

For identifying the scenario where the model is likely to perform the best (best
utility and best fairness), we maximize the Balanced Accuracy and maximize the
negative of Equalized Odds. For the reverse case of identifying the worst model
performance (worst utility and worst fairness), we maximize the negative of
Balanced Accuracy and maximize Equalized Odds.

2.3 Baselines

For the three MOBO algorithms, we plot Pareto fronts which identify the most
efficient (i.e., non-dominated) solutions in terms of the two objectives supplied to
them. Comparing these fronts enables us to see where and when one algorithm
is performing better than others at identifying more extreme solutions. The
MOBO Pareto fronts are compared with those for two baseline approaches:

Grid-based Approach: For creating a grid, we use the approach discussed
in [3], where the proportions of Y=0 to Y=1 and Z=0 to Z=1 are updated from
0.1 to 0.9, with a step of 0.1 each. This creates a set of 9x9 (81) scenarios each
with a unique shift (unique P). These results are described as “Grid scores”.

Randomization Approach: In this approach, we randomly sample 4 pro-
portions, corresponding to a random scenario, and evaluate the resulting utility
and fairness scores. We repeat this process 81 times, to create 81 different sce-
narios. The results are referred to as “Random scores”.

3 Experimental Results

We explore the results across two case studies. For each study, once the datasets
are pre-processed, the data is split into train-test (70-30) and the resulting train
data is used for training a Random Forest (RF) Classifier with random_state=0.

Case Study 1: We explore the Adult Income dataset [9], which is a popular
dataset used for classification problems where the features of individuals such as
capital gain, gender, marital status etc. are used to predict their income, being
higher than $50K or not. We pre-process the data to remove rows with missing
values, convert marital status to binary and one-hot encode categorical columns
and then train the RF model. Sample size for each run is set to 10K. We run
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Fig. 2: Identifying scenarios where the RF model for Adult Income has high
Balanced Accuracy and low Equalized Odds (or high negative Equalized Odds).
Closer to the top-right corner is better.

the auditor to identify the scenarios where the RF model is likely to achieve
the highest Balanced Accuracy and lowest Equalized Odds (or highest negative
Equalized Odds) with the results shown in Figure 2.

We observe the various scenarios identified by the 5 approaches and their
corresponding Pareto fronts along with the score on the complete test data
shown by a red circle (Overall). As expected, the Grid scores are constrained
due to their design and are farther from the ideal top-right corner compared
to other fronts (blue line). Random scores do a better job at achieving high
negative Equalized Odds and high Balanced Accuracy (orange line). While
qEHVI (green) does slightly worse than Random scores, it still improves upon
the Grid scores. Additionally, QqNParEGO and qNEHVT perform similar and in
some scenarios, better than Grid and Random scores. Thus, the auditor is able
to identify the scenarios where the RF model is performing very well and can
inform the user of its capabilities and usefulness even under distribution shifts.

Case Study 2: We explore the medical dataset MIMIC-IIT [10, 11, 12]
processed to create a prediction task of identifying mortality within 30 days of
ICU admission using features like race, admission location etc. We pre-process
the data to combine several files together, restrict the records to only include race
as White or Black, and one-hot encode the categorical columns before training
the RF model. Sample size is set to 1.5K records. We identify the scenarios where
the model will achieve lowest Balanced Accuracy (or higher negative Balanced
Accuracy) with higher Equalized Odds as shown in Figure 3.

We find that Grid scores, Random scores and qNEHVI have overlapping
Pareto fronts indicating a comparable performance for identifying the scenarios
(lines connecting stars, triangles and diamonds). However, qNParEGO and qE-
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Fig. 3: Scenarios where the RF model for MIMIC-III has low Balanced Accuracy
and high Equalized Odds (again top-right corner is most extreme).

HVI clearly perform better than others (black and green lines connecting squares
and crosses respectively) shown by their Pareto fronts being the furthest, with
high Equalized Odds and high negative Balanced Accuracy. The results high-
light how the auditor is able to identify scenarios which encourage the developers
to test and update their models before deployment.

For example, for the green square marker in Figure 3 identified by a red
box, the Balanced Accuracy is 0.5365 and Equalized Odds value is 0.3893 for
the proportions Pyy = 0.2258, FPy; = 0.4041, P;g = 0.7233, P;; = 0.1146. The
auditor is able to identify this unique compound shift where the RF model
is struggling, having high unfairness while making almost random predictions
(Balanced Accuracy close to 0.5). Thus, such an insight enables the developers to
update their model to handle such a shift. This can be observed and mitigated for
other extremes identified on this Pareto front as well which would have otherwise
been missed if such MOBO algorithms using the auditor were not used.

4 Discussion and Conclusion

The Adversarial Auditor proposed in this work enables us to audit Machine
Learning models to identify scenarios where they are likely to perform at ex-
tremes, using Multi-Objective Bayesian Optimization. Through the two case
studies, we highlighted the effectiveness of the auditor in identifying more ex-
treme scenarios in comparison with existing baselines. Thus, this auditor en-
ables an evaluation of Machine Learning models to highlight their strengths
and pitfalls under shifts before they are deployed, thus preventing incorrect and
unpredictable use.
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