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Abstract. The potential of quantum enhanced Q-learning with a focus
on its applicability to a lane change manoeuvre is investigated. In this
context we solve multiple simple reinforcement learning environments us-
ing variational quantum circuits. The achieved results were similar to or
even better than those of a simple constrained classical agent. We could
observe promising behaviour on the more complex lane change manoeu-
vre task, which has an environment with an observation vector size twice
larger than commonly used ones. For the Frozen Lake environment we
found indications of possible quantum advantages in convergence rate.

1 Introduction

The research field of Quantum Reinforcement Learning (QRL) is in an early
stage of development. Recently, quantum enhanced deep Q-learning algorithms
have been shown to work on small environments with discrete or continuous
state space using Variational Quantum Circuits (VQCs) as approximators [1].

In Refs. [2, 3] experimental speed-ups for QRL were shown by using effective
quantum algorithms on environments created with both classical and quantum
communication channels between the agent and the environment.

In this work, we investigated the potential of QRL for solving complex re-
alistic tasks in classical environments, such as merging into a highway in the
context of automated driving [4]. This use case is complex while still using an
observation vector size that can be directly encoded into a quantum circuit. We
focused on a feasibility study and a constrained comparison with simple classical
models.

2 Quantum Reinforcement Learning

In Reinforcement Learning (RL) an agent has to learn an optimal interaction
strategy with an environment through trial and error, getting rewarded depend-
ing on it’s behaviour.

We used a value-based, off-policy deep Q-learning approach with experience
replay and fixed Q-value targets in all experiments, following the training pro-
cedure suggested in Ref. [1].
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Fig. 1: (a) VQC structure used for Q-value predictions, adapted from [5]. (b) Con-
vergence epoch in the Frozen Lake environment (dashed lines represent the median).
(c) Quantum agent’s path length for different noise probabilities on various grid worlds.

To approximate the Q-values we used simple fully connected dense feed-
forward neural networks for the classical agents. For the quantum agents we
used a VQC architecture based on Refs. [1, 5], shown in Figure 1a.

To improve the quantum agent’s ability to adapt to environments, we used
classical pre- and post-processing [1]. Starting with a classical observation vector
s (of length n) a layer-wise prepossessing φλ(s) = (tanh (s · λ1) , . . . , tanh (s · λr))
was applied, with trainable scaling parameters λi and r data encoding layer rep-
etitions, i.e. number of data re-uploads. φλ(s) was then encoded into a n-qubits
system initialised in the ground state |0⊗n〉 using rotational encoding and data
re-uploading. The Q-value for action i in state s is then given by:

Q(s, i) =

(
〈0⊗n|Uθ(φλ(s))

†OiUθ(φλ(s))|0⊗n〉
)
+ 1

2
· woi ,

with Uθ(φλ(s)) the unitary operator describing the state preparation carried out
by the parameterised quantum circuit, Oi the observable (selected as part of a
hyperparameter search) and woi the post-processing scaling weight.

3 Experiments and Results

The lane change manoeuvre environment was proposed in Ref. [4], using the
ADORe1 framework. It presents a scenario where a vehicle has to merge into
randomly simulated moving traffic from a slip road. Humans can make decisions
intuitively in such cases, but a rule-based derivation is not straightforward [4].

1https://github.com/eclipse/adore
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Environments

Frozen
Lake

Grid World of size l × l Cart Pole Lane
ChangeMetrics 4 5 8 11 16 v0 v1

n 4 4 5 6 7 8 4 14
Train.
params

Quantum 96 96 119 142 165 188 94 326
Classical 121 121 134 147 160 173 93(95) 1334

Envs.
solved

Quantum 100% 100% 100% 100% 90% 85% 100% 65% 52%
Classical 100% 100% 100% 100% 100% 85% 100%(90%) 35%(75%) 93

Table 1: Metrics per environment. With n the observation vector size. Metrics for the
classical agent with 2 hidden layers are shown in parenthesis. The classical results for
the Lane Change environment are taken from Ref [4].

Based on a continuous 14-dimensional observation vector, the agents have to
select one of up to four traffic gaps to merge into. This gap is communicated to
a classical algorithmic non-trainable trajectory planner that tries to perform the
manoeuvre [6]. The agents get a sparse rewarded in case of a successful merge.

To assess the feasibility of solving the described environment using QRL, we
first investigated simpler environments with similar properties. We evaluated the
capabilities of the implemented VQC for solving tasks with Q-learning by using
the same architecture for all experiments. Furthermore, we investigated the
effects of observation vector scaling and simple noise on the agents’ performance.

To enable the comparison of classical and quantum agents, we constrained
the former to have a similar number of trainable parameters as the latter, and
used the same inputs for both kind of agents. We used quantum agents with 5
re-upload-layers on all experiments, following Ref. [1]. For the classical agents
we used a single hidden layer constrained to 13 neurons, except for the last
two environments. This constrain leads to a comparable number of trainable
parameters for each environment, as shown in Table 1. For each experiment
we carried out an extensive hyperparameter search for both kind of agents, and
retrained the best models with 20 different seeds.

All environments used had an OpenAI gym interfaces. To train, simulate
and define the quantum circuits we used Cirq, TF-Quantum and TF-Agents2.

3.1 Frozen Lake

We first tested the non-slippery Frozen Lake3 environment, which has a discrete
state space, unlike the lane change case. The agents must learn to cross a (fixed)
frozen lake from start to finish without falling into any holes.

For this and the following environment, the agents can move in the 4 discrete
cardinal directions. The state vector for a map of side length l (l = 4 for Frozen
Lake) is the ⌈log2(l2)⌉-bit binary representation of the agent’s current position
enumerated from 0 to (l2 − 1) in row-major order.

2Gym is now called gymnasium see https://gymnasium.farama.org/.
See https://quantumai.google/cirq and https://www.tensorflow.org for details on
the libraries used. The code is available upon reasonable request.

3See https://gymnasium.farama.org/environments/toy_text/frozen_lake/ for details.
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Since both the environment and agents were deterministic, one evaluation
episode suffices to determine whether the environment has been solved.

As shown in Table 1, both agents could solve the environment perfectly but
the quantum agent converged within half the epochs needed by the classical
agent (see Figure 1b). This hints at a possible training complexity advantage.

3.2 Scalability using Grid Worlds

We used grid world like environments of different sizes to test the agents’ ability
to handle scaling state spaces. These environments were derived from the Frozen
Lake environments by eliminating the holes, thus making their complexity de-
pend solely on the state vector size.

Table 1 shows the different map sizes used and their respective observation
vector size, i.e. the number of qubits used. In this experiment we chose the
hyperparameter configurations that worked best over all map sizes while making
sure that all agents used the same number of data points per training epoch.

As shown in Table 1, both agents solve most of the environments perfectly
with performance degrading for larger maps. Both kinds of agents behaved
similarly regarding the number of epochs needed until convergence. In all cases,
the agents first found suboptimal paths already solving the environment and
later converged to paths of optimal length.

3.3 Cart Pole

We used the Cart Pole4 environment to test the agents’ performance on contin-
uous state spaces. The agents have to learn to balance a pole upright on a cart
that can be discretely moved horizontally on a frictionless track. Differently to
the lane change case the agents get an immediate reward per step. For each
episode, the environment is initialised in a valid random state.

There are two versions of the Cart Pole environment, that differ in the max-
imal episode length. We trained the agents on the shorter v0 version and tested
their generalisation on the longer v1 version without retraining. Each environ-
ment is solved if the agent achieves a score ≥ 95% of the maximal episode length
in 100 consecutive evaluation episodes.

As shown in Table 1, both the classical and quantum agent could solve the
v0 environment perfectly. But when testing their generalisation capabilities on
longer episodes, the classical one did not achieve stable results. To remediate
this, we extended it to have 2 hidden layers containing 9 and 4 neurons, achieving
satisfactory results on v1, although its performance on v0 decreased (shown in
parentheses in Table 1). On the other hand, the quantum agent could solve the
v0 environment perfectly and also generalised to the v1 version with comparable
results to the extended classical agent, without modifications.

Fig. 2 shows prototypical evaluation histories and the percentage of runs per
model that behaved similar to each prototypical example. Notably, the quantum
agent had the most perfect runs and the least catastrophic forgetting runs.

4See https://gymnasium.farama.org/environments/classic_control/cart_pole/.

266

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.

https://gymnasium.farama.org/environments/classic_control/cart_pole/


(a) Perfect
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(b) Noisy
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(c) Catastrophic forgetting
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(d) Not converging
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Fig. 2: Prototypical examples of the mean reward evaluation history in the Cart Pole
v0 environment, carrying out 10 evaluation episodes every 10 training epochs. The
percentages denote the subjective visual classification of the runs into the classes.

3.4 Noise

Since current quantum hardware is noisy, we tested how it affected the quantum
agents’ performance. We chose to use a simple circuit wide depolarising noise
model5, using a variable unified noise probability.

Due to the extreme computational cost of noisy training, we did not do a new
hyperparameter search. Instead, we used the best models found in the noise-free
experiments and retrained them using noisy versions of their circuits. Due to
the non-determinism introduced by noisy circuits, we evaluated on 100 episodes.

The Frozen Lake environment could still be solved for unified noise proba-
bilities ≤ 0.15%, for probabilities up to 0.3% some evaluation episodes could be
solved and for higher ones the agent would never solve the environment.

For Grid Worlds, we analysed the first three map sizes. The quantum agents
could still solve them under higher noise levels, but using increasingly suboptimal
actions. This lead to significantly longer paths (as shown in Fig. 1c) but the
agents still arrived at the goal since there were no holes.

The continuous state-space Cart Pole task was unsolvable using noisy circuits.

3.5 Lane Change

Lastly, we investigated the capabilities of our selected quantum architecture on
the lane change environment. Due to the environment’s time- and computational
complexity, we only trained a quantum agent and compared it to the results
reported in Ref. [4]. We used the same number of layers as in the previous
environments, having four time less trainable parameters than the classical agent
used in Ref. [4] (see Table 1). We carried out a minimal hyperparameter search
using only half of the epochs used in Ref. [4]. The best configuration was then
retrained using the full number of epochs.

5See https://www.tensorflow.org/quantum/tutorials/noise for further details.
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Our results represent a first proof-of-concept for solving the environment
with a quantum agent. Although we did not achieve comparable success rates
to the classical agent (as reported in Table 1), the behaviour demonstrated by
the quantum agent was consistent with observations on other environments when
using suboptimal hyperparameters. Since we did only a minimal hyperparameter
search, the used configuration should be considered suboptimal and with a more
profound configuration exploration a quality comparable to the classical agent
should be achievable.

4 Conclusion

We showed empirically that the used quantum architecture could solve envi-
ronments with continuous or discrete state spaces, discrete action spaces, and
immediate or delayed reward. The results for the Frozen Lake environment
hint at a possible quantum advantage on sample complexity. Furthermore, we
found that already small amounts of noise significantly deteriorate the achieved
performance. Both quantum and classical agents showed similar behaviour re-
garding the state space scaling on grid world environments. Finally, we could
solve episodes of the lane change environment, but did not yet achieve stable
results. Nevertheless, this presents a promising behaviour on such a complex en-
vironment, with a three and a half times larger observation vector size compared
to previous work. Overall, the quantum agent presented a promising potential
for solving various QRL tasks.

It is important to note that due to the constraints imposed on the com-
parisons between the classical and quantum agents, our conclusions cannot be
extrapolated to a more general case without further considerations.
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