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Abstract. Learning dynamic programming algorithms with Graph
Neural Networks (GNNs) is a research direction which is increasingly
gaining popularity. Prior work has demonstrated that in order to learn
such algorithms, it is necessary to have an “alignment” between the neural
architecture and the dynamics of the target algorithms, and that GNNs
align, in fact, with dynamic programming. Here, we provide a different
view of this alignment, studying it through the lens of tropical algebra. We
show that GNNs can approximate dynamic programming algorithms up to
arbitrary precision, provided that their input and output are appropriately
pre- and post-processed.

1 Introduction

The dynamic programming (DP) paradigm [2] aims at finding a solution to a
complex problem by recursively breaking it down to simpler sub-problems whose
solutions are cached and reused for efficiency. A DP algorithm can be schemed as

Answer
(k+1)
i = Update({Answer

(k)
j | j = 1, . . . , n}), (1)

where Answer
(k)
i is the solution of the i-th sub-problem at iteration k, while

Update computes the Answer of a sub-problem from the Answers of the previous
iteration [11, 12]. A recent line of research has focused on finding a parallelism
between DP and what Graph Neural Networks [GNNs, 1] are able to compute and
reason upon. Xu et al. [11] provided a first valuable characterization in this sense,
by introducing the notion of algorithmic alignment which—simplifying—states
that we can achieve a lower sample complexity if the model’s architecture “aligns”
with an algorithm’s computation graph. The authors also provide as an example
the alignment between the Update function of the Bellman-Ford algorithm [BF,
3, 6, 9] and a GNN, defined respectively as

d(k+1)
v = min

u∈N(v)
Auv + d(k)

u , and (BF)

x(k+1)
v =

⊕
u∈N(v)

MLP(x(k)
u ,x(k)

v ), (GNN)

where
⊕

is an aggregation function and MLP is a (learnable) function. In
this example, however, an alignment was performed not only in the model’s
architecture, but also in the operations performed by the Update function, as
the aggregation function of eq. (GNN) is set to

⊕
= min. This kind of “semiring”

alignment can be found also in a later work of the same authors [12]. Moreover,
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the works of Corso et al. [5] and Zhu et al. [13] demonstrate empirically that,
when this kind of alignment is not possible (that is, there is no known algorithm
to align to), using a linear combination of multiple semirings can improve the
performance of GNNs on real-world tasks.

In the following we will show that GNNs can approximate min-aggregated
DP algorithms up to an arbitrary precision. We will show that by drawing
connections between the field of real numbers, where classical neural networks
lie on, and “tropical” semirings, effectively casting GNNs under the framework
of tropical algebra. Based on this, we introduce a proofing framework that
demonstrates that a sum-aggregated GNN, equipped with appropriate encoding
(and decoding) functions to (and from) its latent space can approximate DP
algorithms up to an arbitrary precision. We provide practical proof examples
for well-known reachability and shortest-path algorithms. We confide our work
provides the needed framework to reason about algorithmic alignment of GNNs
at a more abstract and general level than single algorithm alignment, while
providing useful hints to guide the design of effectively “aligned” GNNs.

2 Background on tropical algebra

Tropical semiring. The tropical semiring [4, 8] is the set T = R∪{∞}, equipped
with the following generalized addition and multiplication: for any x, y ∈ T,

x⊕ y = min(x, y) and x⊙ y = x+ y,

where 0 = ∞ and 1 = 0 are, respectively, the absorbing and identity elements.
Matrix multiplication in the tropical semiring are defined analogously to the
classical one, that is, given A ∈ Tl×m and B ∈ Tm×n,[

A⊙B
]
ij
=

⊕
k

Aik ⊙Bkj = min
k

Aik +Bkj .

Let G be a graph whose adjacency matrix W ∈ Tn×n represents the pairwise
distances between two nodes, that is

Wuv =


duv ∈ T uv ∈ E(G),

1 (= 0) u = v,

0 (= ∞) otherwise.
(2)

One can see that W⊙k =

k times︷ ︸︸ ︷
W ⊙W ⊙ · · · ⊙W computes the matrix representing

the k-hop shortest paths between any two pair of nodes. Moreover, for any
k ≥ n − 1, W⊙k is the matrix representing the distances between all pairs of
nodes (as W⊙n−1 ⊙W = W⊙n−1) [8]. Given χv ∈ Tn the vector defined as

[χv]u =

{
1 (= 0) if u = v

0 (= ∞) otherwise,
(3)
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we can see that W⊙n−1 ⊙ χv ∈ Tn computes the distances of all the nodes from
v, which is known as the Bellman-Ford algorithm [3, 6, 9] for computing the
single source shortest paths (SSSP).

Maslov quantization. Let h > 0 and R+ be the set of non-negative real numbers.
We can define the maps Qh : T → R+ and Dh : R+ → T respectively as

Qh(x) =

{
0 if x = ∞
e−x/h otherwise;

Dh(x) =

{
∞ if x = 0

−h lnx otherwise.
(4)

These functions are typically referred to, respectively, as Maslov quantization
and dequantization maps [4, 7], as an analogy to the quantization procedure in
physics, and h is an analog for the Planck constant [7].

The set of non-negative real numbers R+ forms a semi-ring endowed with
the classical addition and multiplication operators (+ and ·). Clearly, objects
mapped in the “quantum” semi-ring can be mapped back in the tropical one,
as ∀x ∈ T. x = Dh(Qh(x)). Moreover, there is a tight correspondence between
the operators in the two semi-rings, as operations performed in the “quantum”
semi-ring also approximate their generalized counterparts in the tropical one. By
defining the generalized addition and multiplication

x⊕h y = Dh(Qh(x) +Qh(y)) and x⊙h y = Dh(Qh(x) ·Qh(y))

for any two x, y ∈ T, we have that

x⊙h y = −h ln(e−x/he−y/h) = x+ y = x⊙ y,

x⊕h y = −h ln(e−x/h + e−y/h) −−−→
h→0

min(x, y) = x⊕ y.

Analogously, matrix operations also approximate the generalized dot product
in the tropical semi-ring: going back to the example in the previous paragraph,
we have that limh→0 Dh[Qh[W]k] = W⊙k for any k (f [A] denotes element-wise
application of f on the matrix A). A similar result is obtained in the SSSP
example, as limh→0 Dh[Qh[W]k ·ev] = W⊙k⊙χv, where ev ∈ Rn

+ is the classical
standard basis vector, defined as in eq. (3) with 0 = 0 and 1 = 1. An example of
the dynamic programming approximation in the classical algebra can be found,
e.g., in [8, §1.2].

3 Approximation capabilities of GNNs

In most graph representation learning scenarios, a exemplar graph G is either
provided as an unweighted adjacency matrix (A ∈ {0, 1}n×n, with Auv = 1 iff
uv ∈ E(G)), or as a weighted one (W ∈ Rn×n

+ , Wuv > 0 iff uv ∈ E(G)), with
weights representing either distances or similarities. In all cases, we assume there
is no self loop (vv ̸∈ E(G) for any v ∈ V (G)). In the following we will show how
the Graph Isomorphism Network [GIN 10], defined as

GINϵ(A,X) = MLP
(
(1 + ϵ)X+AX

)
, (5)
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approximates the SSSP problem using a simple encoder-decoder architecture that
can be synthesized as Gout = DEC(GINk

ϵ (ENC(Gin))), for some given encoder
(ENC) and decoder (DEC), where GINk represent the k compositions of the
same network, that is

GINk
ϵ (A,X) =

{
GINϵ(A,X) if k = 1

GINϵ(A,GINk−1
ϵ (A,X)) otherwise.

The following propositions will only assess the fact that there exists a config-
uration of the parameters of ENC, GIN, and DEC that will allow the model to
approximate the distances in a given task, but they will not address the problem
of how that configuration is obtained (i.e., if a given learning or optimization
algorithm will provide such configuration).

Reachability approximation. Assume we are given an unweighted graph G =
(A, ev) in the form of an adjacency matrix A ∈ {0, 1}n×n and a standard basis
vector ev with 1 on the v entry for a given v ∈ V (G) and 0 in the other ones.
Assume also ENC(X) = X, and DEC(X) = MLP(D1[X]), with D1 defined as
in eq. (4). Then GIN0 (and, consequentially, also GINϵ) can identify the nodes
that are reachable within k-hops from a given node v ∈ V (G) (or, equivalently,
in the k-hop neighborhood v, denoted as Nk(v) or Nk

+(v) if inclusive of v itself).

Proposition 1. Given G = (A, ev), a positive constant c > 0, and d =
MLP(D1[GINk

0(A, ev)]), with GIN0 and MLP having any number of layers
with ReLU activation function, there exist a configuration of their parameters
such that |du − δu(N

k
+(v))| ≤ c for any u ∈ V (G), where δu is the Dirac delta.

Proof. Fix wθ = 1 and bθ = 0 for every layer of GIN/MLP, if not stated
otherwise. Since ReLU acts as an identity function for non-negative elements,
we have that GINk

0(A, ev) = (A+ I)kev. Let W ∈ Tn×n a matrix defined as in
eq. (2), with duw = 0 for all uw ∈ E(G). For any h > 0 we have that

Qh[W] = A+ I and Qh[χv] = ev.

If we set wθ1 = h in the first layer of MLP, we have that

h ·D1[Qh[W]k ·Qh[χv]] = Dh[Qh[W]k ·Qh[χv]] −−−→
h→0

W⊙k ⊙ χv = d◦,

where [d◦]u = 0 if u ∈ Nk
+(v) and [d◦]u = ∞ otherwise. By setting, instead,

wθ1 = −h and bθ1 = 1 in the first layer of MLP, we obtain

lim
h→0

d = lim
h→0

σ[1− h ·D1[(A+ I)kev]] = max[0, 1− d◦] = δ(Nk
+(v)).

For a h > 0 small enough we have that

• for u ∈ Nk
+(v), |du − δu(N

k
+(v))| < c by definition of limit, and

• for u ̸∈ Nk
+(v), [d◦]u ≫ 1 and hence du = δu(N

k
+(v)) = 0,

thus reaching the conclusion.
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Unweighted shortest path. Under the same assumptions, we can show instead
that GINϵ is able to approximate the unweighted k-hop shortest paths to a given
source node (that is, the Bellman-Ford algorithm) up to a given precision.

Proposition 2. Given G = (A, ev), a positive constant c > 0, and d =
MLP(D1[GINk

ϵ (A, ev)]), with GINϵ and MLP having any number of layers
with ReLU activation function, there exist a configuration of their parameters
such that |du − dist(u, v)| ≤ c for any u ∈ Nk

+(v).

Proof. Fix wθ = 1 and bθ = 0 for every layer of GIN/MLP, if not stated
otherwise. Let W ∈ Tn×n a matrix defined as in eq. (2), with duw = 1 for all
uw ∈ E(G). For any h > 0 we have that

Qh[W] = e−1/h ·A+ I and Qh[χv] = ev.

By fixing ϵ = e1/h − 1, and wθ1 = e−1/h in the first layer of GIN, we have that

GINk
ϵ (A, ev) = e−1/h · ((1 + ϵ) · I+A)kev = (I+ e−1/h ·A)kev,

and, by setting also wθ1 = h in the first layer of MLP, we have that

d = h ·D1[Qh[W]k ·Qh[χv]] = Dh[Qh[W]k ·Qh[χv]] −−−→
h→0

W⊙k ⊙ χv = d◦,

where

[d◦]u =

{
dist(u, v) if u ∈ Nk

+(v)

∞ otherwise.
(6)

By definition of limit (for a h > 0 small enough) we reach the conclusion.

Weighted shortest path. If instead we are given a weighted graph G = (W, ev) in
the form of a distance matrix W ∈ Tn×n, defined as in eq. (2) (but with diagonal
elements1 set to ∞), then GIN0 (and GINϵ) can approximate a weighted shortest
path if also proper encoding of the distance is provided. Specifically, by setting
ENC(W) = Q1[MLP[W]], with Q1 defined as in eq. (4) (notice that the MLP
is applied element-wise).

Proposition 3. Given G = (W, ev), a positive constant c > 0, and d =
MLPD[D1[GINk

ϵ (Q1[MLPE[W]], ev)]], with GINϵ, MLPE, and MLPD having
any number of layers with ReLU activation function, there exist a configuration
of their parameters such that |du − dist(u, v)| ≤ c for any u ∈ Nk

+(v).

Proof. Fix wθ = 1 and bθ = 0 for every layer of GIN/MLP, apart in the first layer
of MLPE, where we set wθ1 = 1/h, and in the first layer of MLPD, where we set
instead wθ1 = h. As in the proof of proposition 1, we have that GINk

0(A, ev) =

1This assumption is given only for consistency with the previous settings. If we set the
diagonal elements of W to 0, we have to set GIN−1 instead.
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(A+ I)kev. Noticing that Q1(x/h) = Qh(x) and h ·D1(x) = Dh(x), we obtain
that

d = h ·D1[Q1[
1
hW]k · ev] = Dh[Qh[W]k ·Qh[χv]] −−−→

h→0
W⊙k ⊙ χv = d◦,

where d◦ is defined as in eq. (6). By definition of limit (for a h > 0 small enough)
we reach the conclusion.

4 Conclusion

In this preliminary work, we have drawn connections between tropical algebra
and Graph Neural Networks (GNNs), especially in the context of approximating
Dynamic Programming (DP) algorithms. We proved that a sum-aggregated GNN
can, through the use of Maslov quantization/dequantization maps, effectively
approximate reachability and shortest path algorithms on graphs. By viewing
GNNs under the framework of tropical semirings, we hope to unleash further
research in this direction, exploring the alignment between GNNs and DP even
further, and enabling to reason at a more abstract and general level than that of
aligning GNNs with single specific algorithms.
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