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Abstract. In the last decade it became increasingly apparent the in-
ability of technical metrics to well characterize the behavior of intelligent
systems. In fact, they are nowadays requested to meet also ethical require-
ments such as explainability, fairness, robustness, and privacy increasing
our trust in their use in the wild. The final goal is to be able to develop
a new generation of more responsible and trustworthy machine learning.
In this paper, we focus our attention on randomized machine learning al-
gorithms and models questioning, from a theoretical perspective, if it is
possible to simultaneously optimize multiple metrics that are in tension
between each other towards randomized machine learning algorithms that
we can trust. For this purpose we will leverage the most recent advances
coming from the statistical learning theory: distribution stability and dif-
ferential privacy.

1 Introduction

In the last decade several methodological and technological breakthroughs in
Machine Learning (ML) (e.g., Deep Learning and Large Language Models) have
remarkably changed it [1, 2]. The consequence of this advancement invested
research, industry, entertainment, and society at large making apparent the in-
ability of the technical metrics [3–5] (e.g., accuracy, computational requirements,
and non-regressivity) to well characterize the behavior of ML in the wild. The
daily use of ML-based systems also calls for ethical requirements [6–9] (e.g., ex-
plainability, fairness, robustness, and privacy) to increase the trust in their use.
In fact, many researchers have exposed many different reasons not to trust ML,
especially its lack of ethical boundaries [10].

As a consequence, researchers started to study, theoretically and empirically,
the ethical properties of ML proposing solution for building more explainable,
fair, robust, and privacy aware model often focusing on a single or maximum two
of these aspects [10, 11]. In this paper, we try to investigate what happens when
multiple technical and ethical metrics, that are often in tension between each
other, need to be simultaneously optimized. With this goal in mind we focus the
attention on Randomized Model (RM) and Randomized Algorithm (RA) [12, 13]
and we will leverage probably two of the powerful Statistical Learning Theory
(SLT) [12, 13], i.e., Algorithmic Stability (AS) and Differential Privacy (DP), to
show that it is possible to learn trustworthy RM and develop RA with consis-
tency results, i.e., models that exhibit on the population technical and ethical
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performance that are close to the one imposed on the training data [3]. Specif-
ically in Section 2 we will formally define the notion of trustworthy RA and
RM, in Section 3 we will derive consistency result on them, and finally Section 4
concludes the paper.

2 Randomized Algorithms and Models that We Can Trust

Let us consider the problem of learning, in a randomized way, a more trustwor-
thy binary classifier1. More specifically we would like to build an algorithms and
learn a model able to simultaneously exhibit good technical [3–5] (i.e., accuracy,
computational requirements, and non-regressiveness) and ethical (i.e., explain-
ability, fairness, robustness, and privacy) [11, 14] properties. We will focus our
attention on RA and RM, namely algorithms that may return a different model
when repeating the learning problem and models that may assign different labels
to the same input if we repeat the labeling process [12, 13].

In this setting, let D={(x1, s1, y1), · · ·, (xn, sn, yn)} be a sequence of n sam-
ples drawn independently from an unknown probability distribution PX×S×Y
over X×S×Y, where Y={±1} is the set of binary output labels, S={±1} rep-
resents group membership2 (e.g., gender or ethnicity), and X is the input space.

Let us consider a model f :Z→Ŷ⊆R that exploits the information in the input
space Z=X (and possibly the group membership if allowed by the legislation
Z=X×S [15]) to label it.

From a technical perspective, f is chosen with the purpose to optimize a
series of practical requirements.

In the simplest case, f is chosen inside a set of possible models F to minimize
its error [3]

A(f)=Ez,y{ℓA(f, z, y)}, (1)

with z ∈ Z where ℓ···:F×Z×Y→[0, 1] is a loss function that measures the ef-
fectiveness of f in approximating Pz,y{y|z}. This choice is performed by an
algorithm AH, characterized by a set of hyperparameters H, based on D: AH
and F may be explicitly (e.g., linear models) but also implicitly (e.g., k-rule)
related.

If we deal with RA f=AH(D), i.e., the model chosen by AH based on D
may be different, this association is non-deterministic and then there is a PAH
over F given D. Instead, if we deal with RM (Gibbs Classifiers), AH does not
return a model but a probability distribution Pf=AH(D) over F such each time
a label for an input z ∈ Z need to be labeled f is sampled from F according to
Pf and then f(z) is computed possibly resulting in different label if the same
sample is labeled multiple times.

Another technical metric, coming from the world of software engineering, is
the non-regressivity [5]. In this case we suppose that the learning process is an
iterative procedure of updates to the last version of the model. As a consequence
what we have is the last model f l that we want to update via another model f

1The presentation can be extended to the whole supervised learning setting, we do not
report it here for simplicity.

2The presentation can be extended to multiple groups, we do not report it here for simplicity.
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minimizing the following quantity

N(f)=Ez,y:ℓ···(f l,z,y)≤ε{ℓ···(f, z, y)}, (2)

namely we do not want to introduce large error on sub-regions of Z where the
last model f l performed well. For example, by setting ℓ···(f, z, y)=[yf(z) ≤ 0],
namely when using the Hard loss function, N(f) represent the Negative Flips [5].

A metric, which is harder to define in an unique way, is the sustainability
(e.g., measured in terms of computing power and carbon emission) of the model
training or forward phases [4]. This goal is achieved through mainly two ap-
proaches. The first one acts on the optimization process, i.e., the algorithm,
which aims at finding the minimum of the interested metrics focusing on devel-
oping more efficient optimization algorithms [4]. The second approach focuses
on F defining function space FS, i.e., an algorithm, that prefers models with
limited computational requirements, e.g., models that can be represented with
fewer bits or models that exploit the minimum number of samples in D or or a
minimum subspace of X [4, 16].

We could continue with other technical metrics of the models but we stop
here since we are more interested in ethical metrics.

In fact, apart from the technical perspective there is also an ethical perspec-
tive that needs to be taken into account in order to trust f chosen by AH. In
fact, taking care of the technical requirements is not enough and we need to
take care of the ethical requirements to enforce trust in or algorithms and mod-
els which need to be also, e.g., explainable, fair, and robust while preserving
the privacy of the data of the individuals in D [11, 14]. Note also that each
one of these requirements many different metrics can be exploited but general
principles can be outlined.

Regarding explainability we can explain how model works (global explain-
ability) or the individual predictions (local explainability) [6]. Regarding global
explainability we need to act on the structure of F (and then AH) selecting space
of models belonging to certain classes that are more explainable (e.g., rule based
or linear) FE [6]. Regarding local explainability most approaches (e.g., LIME
or Grad-CAM) basically try to approximate f around z with an interpretable
model, i.e., a model in FE [6]. More formally we would like our model to also
minimize the following quantity

E(f)=Ez,y{ℓE(f, z, y)}=Ez,y{maxz̃∈L(z) minf̃∈FE |ℓ···(f(z̃), y)−ℓ···(f̃(z̃), y)|}, (3)

namely, we would like the model f to be well approximable, locally in the sense
of L(z), by an explainable model in FE.

Regarding fairness, the underlying idea is quite simple: the model should not
behave differently if applied to subgroups of the population [7]. More specifically
what we want to minimize is the following quantity

F(f)=|Ez,y:G−1(z,y){ℓ···(f, z, ẏ)}−Ez,y:G+1(z,y){ℓ···(f, z, ẏ)}|, (4)

where if we set ℓ···(f, z, y)=[f(z) ≤ 0], G·(z, y)=[s=·], and ẏ=1 we get as F(f) the
Demographic Parity while if we set ℓ···(f, z, y)=[f(z) ≤ 0], G·(z, y)=[s=·, y=1],
and ẏ=y we get as F(f) the Equal Opportunity [7, 17].

Regarding robustness, what we want is that the labeling process should not
be influenced by small, natural or adversarial, perturbations of the input, namely
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the model should not be induced into mistakes by slightly modifying the input
data [8]. More formally we would like our model to also minimize the following
quantity

R(f)=Ez,y{ℓR(f, z, y)}=Ez,y{maxz̃∈P(z) ℓ
···(f(z̃), y)}, (5)

where P(z) are all the possible or admissible perturbations of z [8].
Finally, in order to preserve the privacy of the individual in D we have

multiple options [9]. Surely using homomorphic encryption is able to maximize
both privacy and utility but the associated computational overhead is often
prohibitive [9]. Differential Privacy, instead, showed to be a good option to
balance privacy and utility [12, 18]. RA are actually ϵ-DP if

P{AH(D) ∈ F̆} ≤ eϵP{AH(D \ (xi, si, yi)) ∈ F̆}, ∀i ∈ {1, · · · , n}, F̆ ⊆ F . (6)

namely the larger is ϵ the higher the ability to ensure privacy at the expense of
utility [12].

3 Consistency Results

In this section we will show that it is possible to build a RA and a RM from
data able to exhibit all the properties depicted in Section 2. More specifically
we will show that for a particular choice of PAH and Pf the resulting model
empirically exhibiting certain desired levels of technical and ethical metrics will
also behave consistently on the population.

In our setting a good f is something that is able to simultaneously optimized
the metric defined in Section 2, i.e., the technical ones A(f) and N(f) in FS and
the ethical ones E(f), F(f), and R(f) in a FE exhibiting the DP property. In the
non-randomized setting we then would like a function such that

f∗: argminFS∩FE λAA(f)+λNN(f)+λEE(f)+λFF(f)+λRR(f), (7)

where λM∈[0,∞) with M ∈ {A, N, E, F, R} regulate the trade-off between the dif-
ferent metrics that are of-course in tension between each others [11, 14] and
where f∗ does not disclose information about the individuals in D. The larger
is λM the more important for us is the metric M and vice-versa. Since PX×S×Y is
unknowns we cannot find f∗, what we can find is its empirical estimator, namely

f̂ : argminFS∩FE λAÂ(f)+λNN̂(f)+λEÊ(f)+λFF̂(f)+λRR̂(f), (8)

where Â(f), N̂(f), Ê(f), F̂(f), and R̂(f) are the empirical conterparts of A(f), N(f),
E(f), F(f), and R(f) respectively, i.e., the metrics computed using D instead of
PX×S×Y . Inspired by this let us consider the following empirical distribution
on f∈FS∩FE

q(f)=Zqe
−γ[λAÂ(f)+λNN̂(f)+λEÊ(f)+λFF̂(f)+λRR̂(f)], Z−1

q =
∫
FS∩FE q(f)df, (9)

where γ∈[0,∞) and let us use it as PAH for a RA or as Pf for a RM. Basically

q(f) weighs f̂ and exponentially less than the other ones based on their distance,
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in terms of cost function, from f̂ . The distribution of these weights is regulated
by γ. The larger is γ the more weight is associated with the functions that we
like, i.e., good both in terms of technical and ethical metrics. As a consequence,
our desire would be to have γ as large as possible but this, as we will see soon,
will not be allowed if we want to maintain consistency.

At this point we can prove our consistency results, i.e., that the empirical
metrics M̂ are actually close to their value computed on the population M for a RA
or RM based on the empirical distribution defined in Eq. (9). For this purpose,
in the case of a randomized model, we can rely on the AS Theory [13, 17], a
state-of-the-art SLT, to derive the following consistency result.

Theorem 1. The metrics M ∈ M = {A, N, E, F, R} of a RM r which uses the em-
pirical distribution defined in Eq. (9) can be bounded, for some positive universal
constants c1, c2, and c3, as follows

P
{
|M(r)−M̂(r)|≥c1γ/n

∑
M∈M λM+c2γ

√
ln (c3/δ)/n

(∑
M∈M λM+1

)}
≤δ. (10)

The proof is not reported here because of space constraints but the idea,
even if technically challenging, is simple: using the notion of Uniform Distribu-
tion Stability, and the related finite sample bounds, it is possible to bound the
change in the distribution of Eq. (9) when changing one sample in D3 and then
to bound the deviating between the empirical metrics and their value on the
population [13, 17].

Theorem 1 allows us to state that, for a γ that does not increases faster than
O(

√
n), the RM based on empirical distribution defined in Eq. (9) produces

technically and ethically consistent prediction with the deception of the fact
that this model does not respect the privacy of the individuals in D. In order
to address this point, let us consider the RA based on the empirical distribution
defined in Eq. (9) and, relying on the DP Theory [12, 18], a state-of-the-art SLT,
to derive the following consistency result.

Theorem 2. Let us consider the RA which, given a dataset D, selects a func-
tion f∈FS∩FE according to the empirical distribution defined in Eq. (9). This
algorithm is ϵ-DP with ϵ = γ/n

∑
M∈M cMλM for some positive universal constants

cM and by setting γ ≤ √
c1/n/(c2

∑
M∈M λM/n) for some positive universal constants

c1 and c2, it is possible to bound the metrics M ∈ M = {A, N, E, F, R}, for some
positive universal constants cM1 and cM2, as follows

P
{
|M(r)−M̂(r)|≥

√
cM1 ln (cM2/δ)/n

}
≤δ. (11)

Also in this case the proof is not reported here because of space constraints
but the idea is the same behind Theorem 1 but, in this case, we exploited the
bound bases on the finite sample empirical bound based on the DP Theory [12,
18].

Theorem 2 allows us to state that, for a γ that does not increases faster
than O(

√
n), the RA based on empirical distribution defined in Eq. (9) produces

technically and ethically consistent prediction in the sense described in Section 2:
accurate, non-regressive, sustainable, explainable, fair, and robust preserving the
privacy of the individuals in D.

3This observation leaves room for the extension of this work to other, well behaving, metrics.
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4 Conclusions

In this paper we presented a novel theoretical perspective to the problem of
building RA or learning RM that try to simultaneously optimize multiple tech-
nical (e.g., accuracy, computational requirements, and non-regressivity) and eth-
ical (e.g., explainability, fairness, robustness, and privacy) metrics, toward more
trustworthy ML, deriving a series of consistency result where it is show that
forcing, in a particular way, these properties on the training data ensures good
performance also on the population.

This work is surely a fist step forward in the direction of building more
holistic perspective to the problem of trustworthy ML but it shed some light
on an important problem that is becoming every day more and more urgent as
many ML breakthroughs are reaching society at large increasing the cancers on
the potential unwanted ethical impact of the these technologies.
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