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Abstract. Green machine learning refers to research that is more en-
vironmentally friendly and inclusive, not only by producing novel results
without increasing the computational cost, but also by ensuring that any
researcher with a laptop has the opportunity to perform high-quality re-
search without the need to use expensive cloud servers. Efficient machine
learning approaches (especially deep learning) are starting to receive some
attention in the research community. This tutorial is concerned with the
development of machine learning algorithms that optimize efficiency rather
than only accuracy. We provide an overview of this recent field, together
with a review of the novel contributions to the ESANN 2023 special session
on Green Machine Learning.

1 Introduction

Over the past few years, Artificial Intelligence (AI) and Machine Learning (ML)
have brought about a revolution in numerous industries. They have greatly
enhanced efficiency and accuracy in sectors like healthcare, finance, transporta-
tion, education, and entertainment. To achieve higher performance, ML models
have become increasingly complex, resulting in a larger number of parameters to
estimate. However, these advancements come at a cost: the energy consumption
required for training and running these models has risen significantly.

In the next coming years, this energy consumption is projected to multiply,
potentially reaching over 30% of the world’s total energy consumption by 2030.
Large Language Models (LLMs), such as the recently launched ChatGPT with
GPT-4 as backbone model, contribute to this trend with their substantial energy
requirements. For instance, ChatGPT with GPT-3.5 allegedly consumed 1,287
megawatts and generated 552 metric tons of carbon dioxide emissions during its
training, as reported by various sources. Not to mention that the more recent
GPT-4 is estimated to be 10 times larger than its predecessor.

As the environmental impact of this disruptive technology grows almost ex-
ponentially, great concerns arise about its carbon footprint, and thus a new
paradigm has emerged: Green machine learning. Green ML focuses on devel-
oping and implementing sustainable practices and techniques into the design,
training, and deployment of the models so as to reduce AI systems’ energy con-
sumption and environmental footprint.

∗This work was supported by the Ministry of Science and Innovation of Spain (Grant
PID2019-109238GB-C22 / AEI / 10.13039 / 501100011033) and together with “NextGener-
ationE”/PRTR (TED2021-130599A-I00) and by Xunta de Galicia (Grants ED431G 2019/01
and ED431C 2022/44).
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Traditional ML algorithms often require large amounts of computational
power and data, resulting in significant energy consumption from data centers
and increasing greenhouse gas emissions. Green ML seeks to mitigate these envi-
ronmental impacts by optimizing algorithms, improving hardware efficiency, and
adopting sustainable data management practices. Thus, Green ML is character-
ized by low carbon footprints, small model sizes, low computational complexity,
and logical transparency. It offers energy-effective solutions in cloud centers as
well as mobile/edge devices. Green ML also provides a clear and logical decision-
making process to gain people’s trust.

This special session delves into the emerging field of Green ML, exploring
the various approaches, methodologies, and innovations that aim to make AI
and ML more environmentally sustainable, such as federated learning, transfer
learning, etc. We will explore the key challenges and opportunities in reducing
energy consumption, minimizing carbon emissions, and promoting ethical and
responsible AI practices. The adoption of these approaches not only has those
environmental advantages, essential for the future and mandatory in the UE [1],
but also allows for cost savings and increased efficiency without compromising
performance or accuracy.

2 Green Machine Learning

The binomial artificial intelligence and environment has a dual perspective. On
the one hand, we have artificial intelligence as a new technology with the poten-
tial to move towards a green economy (green by AI), and on the other, AI as
a polluting agent in need of the design of energy-efficient algorithms (green in
AI).

According to the existing literature, green algorithms are usually defined
as those algorithms capable of maximizing energy efficiency and reducing the
environmental impact of AI models, while supporting the use of this technology
to respond to different environmental challenges. In this way, two different
types of algorithms are being referred to. On the one hand, those which use
and training are energy efficient (systems that are themselves green, green by
design). On the other hand, algorithms specifically created or used to help meet
the environmental challenges set out, among others, in the Paris Agreement on
climate change, in the United Nations Sustainable Development Goals1, or in
the most recent European Green Deal2.

The debate revolves around the difference between red artificial intelligence,
and green artificial intelligence [2]. In 2018 a study3 revealed that the computa-
tional needs to train large ML models were doubling every 3.4 months since 2012
(deviating quite a bit from Moore’s Law which states that this should happen
every 18 months). In 2020, another paper [3] introduces the concept of red AI,

1https://sdgs.un.org/goals
2https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/

european-green-deal_en
3https://openai.com/research/ai-and-compute
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which “buy” better results at the cost of using massive computational resources.
Their authors analyzed more than 60 papers at the most prestigious conferences
and concluded that the vast majority (between 75% and 90% depending on the
conference) prioritized accuracy over efficiency.

However, the energy consumption of machine learning algorithms should not
be seen as something impossible to reduce and does not have to be assumed
as the cost of progress in this field. Green machine learning can be defined as
machine learning research that produces novel results without increasing com-
putational cost and, ideally, reducing it. In the specialized literature, we can
find several strategies that can be carried out to reduce this consumption and
will be following described.

• Algorithmic optimization. Making algorithms more efficient can have
many benefits, in addition to reducing their environmental footprint. This
is one of the most productive strategies and the focus of green algorithm
development. One area that is quite active is making the inference process
efficient, using quantization or energy-aware pruning [4].

• Hardware optimization. Choosing more computationally efficient hard-
ware can also contribute to energy savings, as some GPUs have substan-
tially higher efficiency in terms of floating point operations per second
(FLOPS) per watt of power usage compared to others. Another impor-
tant issue is in parallelization. One obvious way to reduce the training
time of algorithms is to distribute the computations among several pro-
cessing cores. Anthony et al. [5] showed that, for a given task, increasing
the number of cores to 15 improved both execution time and greenhouse
emissions. However, when the reduction in execution time is smaller than
the relative increase in the number of cores, distributing the computation
can worsen carbon emissions. They performed some experiments demon-
strating how marginal improvements in runtime lead to disproportionately
large emissions. Finally, edge computing is also a relevant strategy in this
context, as the idea is to carry out the computation at the locations where
the data is collected or used, thus avoiding the need of sending the data
to a datacenter or to the cloud, at the same time that it takes advantage
of the limited computational and energy resources of the IoT devices.

• Choice of data center. The carbon footprint is directly proportional
to the efficiency of the data center and the carbon intensity of its loca-
tion. The latter is perhaps the most important factor for the total carbon
footprint due to the huge variation between countries, from less than 20
gCO2e kWh−1 in Norway and Switzerland to over 800 gCO2e kWh−1 in
Australia, South Africa, and some US states.

• Reducing the pragmatic scaling factor. Limiting the number of times
an algorithm is run, especially those that are computationally expensive,
is surely the easiest way to reduce energy consumption. Another possible
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strategy is to limit the time spent on hyperparameter tuning, for example
with less exhaustive searches [6, 7, 8].

Machine learning risks contributing significantly to climate change if it follows
the energy consumption trend of large models. Therefore, if researchers and
developers are aware of the energy and CO2 footprint they are causing, they are
more likely to take measures to reduce it. This is why several tools for calculating
and predicting energy consumption from artificial intelligence algorithms are
emerging. Carbontracker4 is one such tool, in particular for estimating the
consumption of deep learning models (famously computationally and energy
intensive). Another openly available tool is Green Algorithms5, which can be
easily integrated with computational processes as it requires a minimum amount
of information and does not interfere with existing code.

3 Recent contributions

As an area of active research and development in recent years, there are a variety
of recent contributions in Green ML that are focused on a variety of strategies:

• Environmental Impact Assessment: Beyond algorithmic advance-
ments, researchers have also been working on frameworks and tools to
assess the environmental impact of machine learning systems. Over the
recent years, Yigitcanlar et al. [9] explored how cryptocurrency mining
has led to increased energy consumption worldwide, concluding that Bit-
coin miners are expected to consume approximately 130 terawatt hours of
energy (TWh), which represents approximately 0.6% of global electricity
consumption. This puts the bitcoin economy on par with the CO2 emis-
sions of small developing countries such as Sri Lanka or Jordan. In the
field of Natural Language Processing (NLP), Strubell et al. [10] raised
the alarm when they discovered that training a widely used computational
model emitted as much CO2 as five cars in their lifetime. More recently,
George et al. [11] reported that language models like GPT-3 [12] or Chat-
GPT reportedly consumed over 700,000 liters of water during its training
phase, which is equivalent to the amount of water used by an average
American household in about 20 years.

• Energy-Efficient Models: Researchers have focused on designing opti-
mization techniques that reduce the computational resources required, thus
minimizing energy consumption. These approaches include sparse training
methods [13, 14, 15], quantization techniques [16, 17, 18], and low-precision
arithmetic operations [19, 20], which decrease both the memory footprint
and the computational complexity of training models.

• Hardware Acceleration: Another area of focus in Green ML is the de-
velopment of specialized hardware accelerators (like GPUs or TPUs [21])

4https://carbontracker.org
5http://www.green-algorithms.org
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tailored specifically for machine learning tasks, and the ability to customize
machine learning models to be used in that specific hardware [22, 23]. For
instance, works in edge computing [24, 25] suggest that we can achieve not
only less-energy demanding algorithms but also privacy-preserving archi-
tectures that can be trained without sharing all of the data.

• Data Center Optimization: Researchers have developed algorithms and
frameworks that dynamically manage server loads [26, 27], adjust cooling
systems [28, 29], and optimize resource allocation to reduce energy con-
sumption in data centers [30].

• Energy-Efficient Structures: Green ML contributes to making struc-
tures more energy-efficient. ML models can analyze sensor data from smart
buildings [31, 32] and cities [33, 34] to optimize heating, ventilation, and
air conditioning (HVAC) systems, lighting, and energy usage patterns, re-
sulting in significant energy savings and reduced carbon emissions [35, 36].

Other important fields of study like climate change [37], sustainable agricul-
ture [38, 39], renewable energy forecasting [40, 41] or waste management [42]
are gaining special interest over the last years, increasing the scope of the use of
machine learning in different green scenarios.

4 Contributions to the special session

The Green Machine Learning special session has garnered contributions from
multiple research groups, showing methodologies that tackle both the theoreti-
cal and applied dimensions of the core subject matter. The subsequent section
provides concise introductions to each accepted paper, highlighting their signif-
icance and relevance.

Two of the accepted papers propose more efficient methods in the field of fea-
ture selection. Feature selection (FS) is a fundamental task in machine learning,
as it can help in reducing dimension and thus contributes to more understand-
able models. Garćıa-Castillo et al. [43], in particular, develop a novel and
efficient method for feature selection in domain adaptation, a type of transfer
learning where the source and target domains share the feature space and task
but differ in their distributions. The researchers present an alternative method,
Mutual Information Maximization (MIM), as opposed to the commonly used
evolutionary algorithms in the field. MIM offers advantages such as eliminating
the need for an iterative search process and being computationally less demand-
ing. Through experiments conducted on two datasets, they demonstrate that
their proposed method outperforms two previously suggested alternatives that
rely on evolutionary algorithms: Sticky Binary Particle Swarm Optimization
using classifiers or data complexity metrics. Specifically, their method shows su-
perior efficiency, speed, and the capability to select a smaller subset of features,
while still achieving competitive accuracy results in classification tasks.

In the work of Suárez-Marcote et al. [44], an efficient and green approach for
feature selection is proposed, using principles from information theory. A key
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novelty of their method lies in employing logarithmic division and fixed-point
precision techniques. The authors conducted experiments involving two popular
information-theoretic filter methods, namely Mutual Information Maximization
and Joint Mutual Information Maximization. The results of their study suggest
that adopting low-precision representations has the potential to decrease energy
consumption without compromising information content. Additionally, the use
of logarithmic division provides an extra level of energy efficiency, which proves
beneficial in resource-constrained environments. In terms of classification per-
formance, the modified algorithms employing fixed-point representation and log-
arithmic division demonstrated comparable results to the baseline approaches,
even when there were slight discrepancies in the obtained feature rankings.

Lourenço et al. [45] present a scalable and sustainable methodology for
condition-based maintenance of wheel out-of-roundness. The methodology in-
volves developing an anomaly detection model using locality-sensitive hashing
to analyze extensive time series datasets generated by railway network sensors.
The implementation leverages the Apache Spark framework for parallel process-
ing, facilitating efficient data analysis across multiple clusters. The performance
study conducted demonstrates the robustness and efficiency of the fault detection
method, even when confronted with various wheel profiles, track irregularities,
train speeds, sensor positions, and non-linear environmental factors that may
introduce artificial noise and signal distortion.

Shumska et al. [46] introduce a novel and efficient approach, called block-
diagonal dissimilarity extension, within the Generalized Matrix Learning Vector
Quantization (GMLVQ) framework, and applied it to agricultural multispectral
images. Their findings suggest that, for the Statlog dataset classification in Eu-
clidean space, using the quadratic form yields the highest accuracy, while the
full and block-diagonal configurations of GMLVQ matrices yield comparable re-
sults. Their models demonstrate similar accuracy levels as previously reported
methods such as neural networks, support vector machines, and k-nearest neigh-
bors, while offers the advantages of interpretability, reduced complexity, and the
ability to visualize multispectral data.
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[17] Sarit Khirirat, Sindri Magnússon, Arda Aytekin, and Mikael Johansson. A flexible frame-
work for communication-efficient machine learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages 8101–8109, 2021.

[18] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language mod-
els. In International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

[19] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized
8bit bert. In 2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive
Computing-NeurIPS Edition (EMC2-NIPS), pages 36–39. IEEE, 2019.

[20] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training
quantization for vision transformer. Advances in Neural Information Processing Systems,
34:28092–28103, 2021.

[21] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant
Patil, Suvinay Subramanian, Andy Swing, Brian Towles, et al. Tpu v4: An optically re-
configurable supercomputer for machine learning with hardware support for embeddings.
In Proceedings of the 50th Annual International Symposium on Computer Architecture,
pages 1–14, 2023.

275

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



[22] Mario Osta, Mohamad Alameh, Hamoud Younes, Ali Ibrahim, and Maurizio Valle. En-
ergy efficient implementation of machine learning algorithms on hardware platforms. In
2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
pages 21–24. IEEE, 2019.

[23] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyan-
tha, Jie Liu, and Diana Marculescu. Single-path nas: Designing hardware-efficient con-
vnets in less than 4 hours. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 481–497. Springer, 2019.

[24] Shivani Singh, Razia Sulthana, Tanvi Shewale, Vinay Chamola, Abderrahim Benslimane,
and Biplab Sikdar. Machine-learning-assisted security and privacy provisioning for edge
computing: A survey. IEEE Internet of Things Journal, 9(1):236–260, 2021.

[25] Yichen Wan, Youyang Qu, Longxiang Gao, and Yong Xiang. Privacy-preserving
blockchain-enabled federated learning for b5g-driven edge computing. Computer Net-
works, 204:108671, 2022.

[26] Arezoo Ghasemi and Abolfazl Toroghi Haghighat. A multi-objective load balancing al-
gorithm for virtual machine placement in cloud data centers based on machine learning.
Computing, 102:2049–2072, 2020.

[27] Haiwei Dong, Ali Munir, Hanine Tout, and Yashar Ganjali. Next-generation data center
network enabled by machine learning: Review, challenges, and opportunities. IEEE
Access, 9:136459–136475, 2021.

[28] Yuanlong Li, Yonggang Wen, Dacheng Tao, and Kyle Guan. Transforming cooling op-
timization for green data center via deep reinforcement learning. IEEE transactions on
cybernetics, 50(5):2002–2013, 2019.

[29] Zhiwei Cao, Xin Zhou, Han Hu, Zhi Wang, and Yonggang Wen. Toward a systematic
survey for carbon neutral data centers. IEEE Communications Surveys & Tutorials,
24(2):895–936, 2022.

[30] Rafael Moreno-Vozmediano, Rubén S Montero, Eduardo Huedo, and Ignacio M Llorente.
Efficient resource provisioning for elastic cloud services based on machine learning tech-
niques. Journal of Cloud Computing, 8(1):1–18, 2019.

[31] Basheer Qolomany, Ala Al-Fuqaha, Ajay Gupta, Driss Benhaddou, Safaa Alwajidi, Junaid
Qadir, and Alvis C Fong. Leveraging machine learning and big data for smart buildings:
A comprehensive survey. IEEE Access, 7:90316–90356, 2019.

[32] Anh-Duc Pham, Ngoc-Tri Ngo, Thi Thu Ha Truong, Nhat-To Huynh, and Ngoc-Son
Truong. Predicting energy consumption in multiple buildings using machine learn-
ing for improving energy efficiency and sustainability. Journal of Cleaner Production,
260:121082, 2020.
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