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Abstract. Recent research has shown that some learned classifiers can

be more easily fooled by an adversary who carefully crafts imperceptible

or physically plausible modifications of the input data regarding particular

subgroups of the population (e.g., people with particular gender, ethnicity,

or skin color). This form of unfairness has been just recently studied, not-

ing the fact that classical fairness metrics, which only observe the model

outputs, are not enough but robustness biases need to be measured and

mitigated as well. For this reason, in this paper, we will first develop a new

metric of fairness which generalizes the current ones and degenerates in

the classical ones and then we will develop a theoretical mitigation frame-

work with consistency results able to generate a new empirical mitigation

strategy and explain why the current ones actually work.

1 Introduction

Predictive models learned from data are nowadays ubiquitous thanks to massive

investments in products able to make them a commodity. In some applications,

e.g., games [1], healthcare [2], and text generation [3], these tools have been

shown to compare to human capabilities. Nevertheless, these achievements are

accompanied by increasing concerns about their impacts on society [4]. In fact, it

has been shown how learned classifiers can be easily fooled by an adversary who

carefully crafts imperceptible or physically plausible modifications of the input

data [5] and that they exhibit the same historical human biases (e.g., threading

unfairly subgroups of the population based on gender, ethnicity, or skin color)

that are hidden in the data [6]. The problem becomes even worse when these two

weaknesses combine together. In fact, many recent works [7–14] actually showed

that certain learned classifiers can be more easily fooled by an adversary who

carefully crafts imperceptible or physically plausible modifications of the input

data regarding particular subgroups of the population producing a robustness

bias. For the purpose of measuring this bias, they propose different metrics

that, as for the classical ones, are sometimes in contrast with each other [6].
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Then, they propose methods to mitigate these biases with practical approaches

partially or not supported by a theoretical background.

In this paper, we will first develop a new generalized metric of fairness (Sec-

tion 2) which encompasses the current ones for robustness biases and degenerates

into the classical ones of fairness. Then we will develop a theoretical mitigation

framework (Section 3) with consistency results (i.e., robustness and robustness

bias generalization bound) able to generate a new empirical mitigation strategy

(Section 4) and explain why the current ones actually work. Section 5 concludes

the paper.

2 Robustness Bias

Let D= {(X1, s1, y1), · · ·, (Xn, sn, yn)} be a sequence of n samples drawn inde-

pendently from an unknown probability distribution µ over X×S×Y, where

Y={±1} is the set of binary output labels1, S={a, b} represents group member-

ship among two groups2 (e.g. ‘female’ or ‘male’), and X is the input space. We

note that the input X∈X may further contain or not the sensitive feature s∈S in

it3. Based on a random observation of x ∈ X ∈ Rd one has to estimate y ∈ Y ⊆
{±1} by choosing a suitable hypothesis h : X → Ŷ in a set of possible ones H.

A learning algorithm selects and hypothesis h : X→Ŷ⊆Rin a set of possible ones

H based on D. The generalization error (i.e., the risk) Lℓ(h)=E(X,y){ℓ(h(X), y)}
together with the empirical one4 L̂ℓ(h)=Ê(X,y){ℓ(h(X), y)} associated to an hy-

pothesis h, is defined through a loss function ℓ:Ŷ×Y→[0, 1]. The hypothesis

h is subject to an adversary which tries to fool the model into mistakes by

modifying the observation X according to a set of possible modifications B(X).

We can define then a new loss ℓ̃(h(X), y)= supX∈B(X) ℓ(h(X), y) to measure the

robustness to this adversary together with the generalization robustness Lℓ̃(h)

and its empirical estimator L̂ℓ̃(h). Note that when B(X)=X we have that ℓ̃=ℓ.

Moreover, we request the hypothesis h to be also fair, namely it should not be-

have differently if applied to subgroups of the population [6]. For this purpose,

different metrics have been defined with ϵ-fairness [16] being the most general

one encompassing all the most common notions of fairness, e.g., Difference of

Demographic Parity (DDP) and Difference of Equal Opportunity.

What we target here is to measure a sort of fusion between robustness and

fairness, namely the bias of robustness of the model over the different subgroups

in the population.

1The extension to multiclass classification is not reported for space constraints.
2The extension to multiple subgroups is not reported for space constraints.
3The sensitive feature may not be available in the testing phase or it might not be possible

to use it as a predictor in the model due to legal requirements [15].
4With Ê(X,y) we indicate the expectation restricted to D.
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Definition 1. Let G·(s, y):S×Y→B be a Boolen-valued function, then h is ϵ-

bias-robust if Fℓ̃(h)=|Lℓ̃,Ga,ẏ(h)−Lℓ̃,Gb,ẏ(h)|≤ϵ where we have defined Lℓ̃,G·,ẏ(h) as

Lℓ̃,G·,ẏ(h)=E(X,s,y):G·(s,y){ℓ̃(h(X), ẏ)}.

Note that F̂ℓ̃(h)=|L̂ℓ̃,Ga,ẏ(h)−L̂ℓ̃,Gb,ẏ(h}| where we have defined L̂ℓ̃,G·,ẏ(h) as

L̂ℓ̃,G·,ẏ(h)=Ê(X,s,y):G·(s,y){ℓ̃(h(X), ẏ)}, i.e., the empirical estimator of Fℓ̃(h). Note

also that if B(X)=X ϵ-bias-robustness degenerate in the ϵ-fairness, if we use

the Hard loss function ℓ(h(X), y)=[h(X)̸=y], G·(s, y)=[s=·], and ẏ=1 we get the

Difference of Robust Demographic Parity (DRDP), and if ℓ(h(X), y)=[h(X)̸=y],

G·(s, y)=[s=·, y= + 1], and ẏ=y we get the Difference of Robust Equal Oppor-

tunity.

3 Theoretical Mitigation Framework

In this paper, we depict a robustness bias mitigation framework deriving the

associated consistency results (i.e., robustness and robustness bias generalization

bound). Inspired by the risk minimization principle [16, 17], we consider the

problem of minimizing the robust risk under robust bias constraint

h∗ : argminh∈H Lℓ̃(h), s.t. Fℓ̃(h) ≤ ϵ, (1)

where ϵ ∈ [0, 1] is the amount of robustness bias that we are willing to bear

since Lℓ̃(h) and Fℓ̃(h) are obviously in tension with each other [7]. Since the

distribution µ is unknown, Problem 1 cannot be solved and we have to replace

the deterministic quantities with their empirical counterparts

ĥ : argminh∈H L̂ℓ̃(h), s.t. F̂ℓ̃(h) ≤ ϵ̂, (2)

where ϵ̂ ∈ [0, 1], obtaining the counterpart of the empirical risk minimization

principle [16, 17] in the case when they want to maximize the robustness mini-

mizing the robustness bias.

In this section, we will show that h∗ and ĥ are linked one to another. In

particular, if the parameter ϵ̂ is chosen appropriately, we will show that, in a

certain sense, the estimator ĥ is consistent. In order to present our observations,

we require that suph∈H |Lℓ̃(h)−L̂ℓ̃(h)|≤Uℓ̃(δ, n,H) with probability at least 1−δ

that where Uℓ̃(δ, n,H) goes to zero as n grows to infinity if the classH is learnable

with respect to the loss [17–19].

Note that if a function is learnable with respect to ℓ it is also learnable with

respect to ℓ̃ as proved and discussed in [18, 19]. Note also that we could use

different losses for L and F which we do not discuss here due to space constraints.

At this point, we can present the main result of this section, namely we can

prove5 the following theorem which proves the consistency of ϵ̂ with respect to

5Proof is not reported due to space constraints but the idea is the same behind the work

of [16] plus some technicalities presented in [19].
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Fig. 1: L̂ℓ̃(h) and F̂ℓ̃(h) on the test set for the model learned with Problem (2)

without (the two graphs on the left) and with (the two graphs on the left)

robustness varying ϵ on the Arrhythmia dataset.

ĥ, namely ϵ̂ tends to ĥ as n grows both in terms of robustness and robustness

bias.

Theorem 1. Let H be a learnable set of functions with respect to the loss func-

tion ℓ̃ and let h∗ be a solution of Problem (1) and let ĥ be a solution of Prob-

lem (2) with ϵ̂ = ϵ+
∑

s∈S Uℓ̃ (δ, nGs
,H), where nG· = |{(X, s, y) ∈ D : G·(s, y)}|.

With probability at least 1− 6δ it holds simultaneously that

Lℓ̃(ĥ)−Lℓ̃(h
∗)≤2Uℓ̃ (δ, n,H) , Fℓ̃(ĥ)≤ϵ+2

∑
s∈{a,b} Uℓ̃ (δ, nGs

,H) . (3)

Note that Theorem 1 clearly explains why some commonly used strategies to

mitigate the robustness bias actually work. In fact, most of the current mitiga-

tion approaches [7–14], actually rely on the Tikhonov relaxation of Problem (2)

where ĥ : argminh∈H L̂ℓ̃(h)+λF̂ℓ̃(h) with λ ∈ [0,∞) and where the terms L̂ℓ̃(h)

and F̂ℓ̃(h) are actually relaxed or approximated with different approaches.

4 Empirical Mitigation Framework

In this section, we will instantiate Problem (2) to the case of linear models6.

In this setting X=Rd, h(X)=W ·X+W0 for some vector of parameters W∈Rd

and the parameter W0∈R. We define H as an L2 ball, i.e., ∥W∥2=H∈[0,∞).

Ideally in Problem (2) we would like to minimize the misclassification error, i.e.,

ℓ(h(X), y)=[yh(X)≤0], with an L2 ball attach B(X)={X̃:∥X̃−X∥2≤B} with

B∈[0,∞) under a particular fairness constraint. For space constraints, we re-

strict to the DRDP, i.e., F̂ℓ̃(h)=|L̂ℓ̃,[s=a],1(h)−L̂ℓ̃,[s=b],1(h)| but the result can be

6The extension to Reproducing Kernel Hilbert Space is not reported here for space con-

straints.

190

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



extended to the more general case of the ϵ-bias-robust. In this setting, Prob-

lem (2) is NP-hard so intractable. As a consequence we propose a convex relax-

ation of Problem (2) noting that the empirical robustness can be, in this setting,

upper bounded with a convex quantity as follows

L̂ℓ̃(h)≤Ê(X,y) max[0, 1−y(W ·X+W0)+HB],

where we basically exploited the hinge loss to upper bound the misclassification

error. For the DRDP we proceeded analogously

F̂ℓ̃(h)≤

{
Ê(X,s=a) max[0, 1−W ·X+W0+HB]−Ê(X,s=b) min[1,−W ·X+W0+HB]

Ê(X,s=b) max[0, 1−W ·X+W0+HB]−Ê(X,s=a) min[1,−W ·X+W0+HB]
.

Note that, substituting the last two results in Problem (2) results in a convex

problem.

When B=0 and ϵ=∞ we get the Linear Support Vector Machine (SVM),

when B=0 and ϵ small enough we get the fair SVM, when B ̸=0 and ϵ=∞ we get

the robust SVM, and finally when B ̸=0 and ϵ small enough we get the robust

unbiased SVM.

In Figure 1 we report the Empirical Robustness (L̂ℓ̃(h)) and the DRDP

(F̂ℓ̃(h)) on the test set (repeating the experiments 30 times) for the model learned

with Problem (2) cross-validating W to the optimal value without (B=0) and

with (B=B namely the same B has been used both in training and in mea-

suring the performance on the test) robustness varying ϵ on the Arrhythmia

dataset [20]. From Figure 1 it is possible to observe that, in order to obtain the

best trade-off between L̂ℓ̃(h) and F̂ℓ̃(h) in Problem (2), one has to activate both

robustness and the constraint, for a specific value of ϵ, supporting the proposed

theoretically grounded algorithm.

5 Conclusions

In this work, we investigated the problem that some learned classifiers can be

more easily fooled by small perturbations of the input data regarding particular

subgroups of the population creating robustness biases that need to be measured

and mitigated. For this reason, we first developed a new metric of fairness

which generalizes the current ones and degenerates in the classical ones. Then

we developed a theoretical mitigation framework with consistency results able

to generate a new empirical mitigation strategy and explain why the current

ones actually work. Some preliminary results also supported the quality of the

proposal. Nevertheless, this work is a first step forward that needs to be more

theoretically investigated and supported by stronger empirical evidence also for

non-linear and deep models.
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