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Abstract. This study investigates the performance of 36 different ac-
tivation functions applied in Extreme Learning Machine on 10 distinct
datasets. Results show that Mish and Sexp activation functions exhibit
outstanding generalization abilities and consistently perform well across
most datasets, while other functions are more dependent on the charac-
teristics of the task at hand. The selection of an activation function is
intricately linked to the applied dataset and novel activation functions
may possess superior generalization capabilities comparing to commonly
employed alternatives. This study provides valuable insight for researchers
and practitioners seeking to optimize Extreme Learning Machine perfor-
mance for solving classification tasks.

1 Introduction

Extreme Learning Machine (ELM) is a type of neural network that was intro-
duced by Huang et al. in 2004 [1]. The ELM architecture comprises of an input
layer, a single hidden layer and an output layer of neurons. The number of neu-
rons in the input and output layer are adapted to the specific task at hand. Due
to the scarcity of theoretical methods, it is difficult to determine upfront the
optimal number of hidden units for the ELM. Consequently, the latter is usu-
ally established through empirical evaluations. ELM has been widely applied in
various fields, including image classification [2], medical diagnosis [3] and soil mi-
croorganism identification [4]. It is shown to be highly computationally efficient
in both classification and regression tasks [5]. The ELM has become an increas-
ingly popular Machine Learning (ML) technique in recent years as its versatility
and effectiveness make it a valuable tool for a wide range of applications.

Extreme Learning Machine utilizes the McCulloch-Pitts neurons [6] for which
an activation function needs to be determined. Huang et al. proved that in
contrast to conventional gradient-based learning algorithms that are exclusively
applicable to differentiable activation functions, ELM may also employ non-
differentiable or piecewise differentiable activation functions [7].

In recent years, new activation functions are proposed that yield promising
results in ML. The Rectified Linear Unit (ReLU) [8] is one of the activation
functions that is adopted in Convolution Neural Networks (CNN). Another ac-
tivation function that has gained popularity in recent years is the Exponential
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Linear Unit (ELU) function that can achieve better performance than the ReLU
in certain scenarios e.g. in networks with more than 5 layers [9].

The choice of activation function depends on the specific input task and re-
searchers are continuously exploring new activation functions that can improve
the performance of ELM applied to a wide range of problems [10]. In practi-
cal applications of ELM, literature overview shows that despite novel activation
functions being developed the sigmoid and hyperbolic tangent functions remain
the most widely used in ELM [11]. The insufficient treatment of complex com-
parison of activation functions applied for different datasets has been detected
in the field in question. In one of the works that provide comparison between 11
different activation functions only one dataset is examined [12]. The observed ac-
tivation function’s performance on a single dataset raises concerns regarding its
generalizability. To address this issue, we present a comprehensive performance
investigation of the 36 different activation functions on 10 distinct datasets. The
aim of this study is to determine whether certain activation functions outper-
form others and to assess whether the optimal selection varies depending on the
dataset. Our hypothesis is that the activation function selection is intricately
linked to the characteristics of the dataset used for which subset of functions can
be identified that consistently exhibit superior or inferior performance. Note-
worthy, this paper has utilized a diverse set of activation functions for the ELM,
many of which have not been previously investigated in the literature like Mish,
originally introduced in 2019 [13]. Novel activation functions may possess su-
perior generalization capabilities in comparison to the commonly employed al-
ternatives, rendering remarkable candidates for enhancing the performance of
classification tasks using ELMs.

2 Extreme Learning Machine Classifier

In a supervised classification task N observations are represented as pairs of
values denoted by {(xi, ti)}Ni=1. The i-th vector xi is composed of d features,
while the corresponding i-th label ti identifies the class to which the vector
belongs. For a classification problem with M distinctive classes, ti ranges from
0 to M−1. The input data is used to construct a matrix X = (x1, x2, . . . , xN ) ∈
Md×N (R) with each xi ∈ Rd, along with a vector T = (t1, . . . , tN ).

The input layer of an ELM neural network is composed of d neurons, while
its output layer has a number of units equal to M . The network calculates
N values {yi}Ni=1 as its output, which are then used to form the matrix Y =
(y1, y2, . . . , yN ) ∈ MN×M (R). To recognize a given input xi, the maximal value
of yi observed on the p-th index is extracted. This assigns xi to the p-th class.
Suppose that a fixed number of neurons, denoted by L is selected for the hidden
layer in advance. The weights connecting the input and hidden layers define the
matrix W ∈ Md×L(R), where wij corresponds to the weight associated with the
connection between the i-th input layer neuron and the j-th neuron in the hidden
layer. The bias connections are represented by a vector b = (b1, . . . , bN ). During
the learning process of the ELM, the coefficients of W and b are determined
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using a uniform distribution function U(−1, 1). The outputs of the hidden layer
neurons are stored in the matrix H. In ELM, the activation function f : R → R
introduces non-linearity to the hidden layer output, which is crucial for the
network’s performance on tasks that involve complex relationships between input
and output variables [1]. The weights β between the hidden and output layer in
ELM can be calculated by solving the equation Y = Hβ. This system cannot
be directly solved since H is non-invertible and ∥Hβ−Y ∥ = 0 (see Huang et al.
[1]). Instead, we estimate β as the minimizer of the mean residual square error:

β̂ = argmin
β

∥Hβ − T∥2 = H†T , where H† is the Moore-Penrose generalized

inverse of H [14]. The pseudo-inverse of matrix H† is uniquely determined and
in the case of a non-singular matrix H, it coincides with an ordinary inverse,
i.e. H† = H−1. The matrix H† gives the solution β̂ so that Hβ̂ is close to Y in
terms of mean square error.

3 Methodology and results

The use of ELM’s techniques necessitates the selection of an appropriate ac-
tivation function and requires determination of the number of hidden layer
units denoted by L. To enable clear comparison of results, we propose a lu-
cidity experiment involving running ELM on a specific dataset using a fixed
activation function and conducting 50 repetitions of 10% cross-validation. A
search over the range of L values, from 100 to 5000 in increments of 100, is
then performed to identify the optimal classification accuracy. The reported
results reflect the highest accuracy obtained using a particular dataset and ac-
tivation function at various values of L. In light of the extensive use of various
activation functions in this study, it is recommended that each applied acti-
vation function should be referenced to the relevant scientific literature. Ac-
tivation functions taken here into consideration are: identity f(x) = x, Bi-
nary Step Function (BSF ) f(x) = {1 : x ≥ 0; 0 : x < 0}, TanhRe f(x) =
tanh(x) + x, HTan1 f(x) = min(max(x,−1), 1), Sine f(x) = sin(x), ASin
(Inverse Sine) f(x) = arcsin(min(max(x,−1), 1)), Cosine f(x) = cos(x), Soft
Exponential (Sexp) f(x) = max(x, 0)+ ln(1+ exp{−|x|}), Inverse Square Root
Linear Unit (ISRLU ) f(x) = x

1+e−1.5x , Inverse Square Root Linear Units
(ISRLUs) fα(x) = x√

1+αx2
, Asymmetric Rectified Linear Unit (AReLU )

f(x) = {x : x ≥ 0; 0.1x : x < 0}, Bent’s Exponential Linear Units (BELUs)

f(x) =
√
x2+1−1

2 + x, Exponential Linear Units with Maxout (Max-ELUs)
fα(x) = max(x, αex − 1), Tilted Exponential Linear Units (TELUs) fα(x) =
{x : x ≥ 0;αex − 1 : x < 0}, Soft Clip Exponential Linear Units (SCELU )
fα(x) = {x : x ≥ 0;αex : x < 0}, Scaled Exponential Sine Linear Units
(SESLUs) fα,β(x) = {x : x ≥ 0;αsin(βx) : x < 0}, Square Non-Linearity

(SQNL) f(x) = {−1 : x < −2; x+x2

4 : x < 0; x−x2

4 : x ≥ 2}, Soft Clip-
ping f(x) = {−1 : x ≤ −1;x : x > −1 and x > 1; 1 : x ≥ 1}, SineReLU
f(x) = max(0, sin(x)), Rectified Square Root (ReSQRT ) f(x) =

√
max(0, x),
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# Samples 690 569 1k 6k 208 14k 13k 351 3k 846
# Features 14 30 11 166 60 14 16 34 180 6
Activation A B C D E F G H I J
identity 77 95 77 96 74 64 90 82 95 76
BSF 60 57 2 56 55 55 16 74 39 31
Sigmoid 76 94 84 95 74 88 91 84 94 77
Swish 77 94 84 93 77 88 91 83 93 79
ELiSH 76 93 81 94 74 77 90 85 94 75
TanH 75 94 82 94 72 86 90 80 93 75
HardTanH 70 88 76 86 72 61 64 81 90 62
ReLU 72 90 79 87 74 62 89 88 88 67
TanhRe 75 94 82 94 71 86 90 81 94 75
ELUs 76 93 81 94 74 77 90 85 94 75
Soft-Plus 77 95 84 94 77 89 91 86 94 79
LReLU 71 90 79 88 74 63 90 88 88 68
SeLU 76 94 83 93 72 86 90 81 93 74
ReLU6 71 90 79 87 74 62 89 88 88 66
HTan1 73 90 79 92 74 63 74 82 93 70
Sinusoidal 75 93 84 94 77 90 91 80 93 77
Asin 69 88 78 89 73 61 67 83 93 63
Cosine 47 48 1 40 37 41 1 34 12 14
Sexp 78 95 84 95 77 89 91 85 94 79
Mish 78 95 84 94 77 89 91 83 94 80
ISRLU 77 94 83 92 76 87 91 82 92 77
RReLU 73 92 80 87 75 73 90 86 86 70
GELU 76 94 83 92 76 87 91 83 92 78
SELU 74 91 79 94 71 72 90 82 94 72
ISRLU 75 94 82 94 72 85 90 80 93 74
AReLU 72 91 79 89 74 62 90 87 90 69
BELU 77 94 83 95 77 82 91 84 95 78
Max-ELU 79 91 80 94 74 91 91 81 90 80
TELUs 76 93 81 94 74 74 90 85 94 74
SCELU 61 86 24 71 66 67 21 84 56 37
SESLU 76 94 82 94 72 78 90 82 94 76
SQNL 76 93 81 94 73 70 87 81 94 74
Soft Clip 73 90 79 92 73 63 74 82 93 70
SineReLU 71 89 79 86 72 65 88 84 86 64
ReSQRT 68 88 77 84 73 61 84 86 89 58
SiLU 77 95 84 93 77 86 91 83 93 79

Table 1: The accuracy (ACC) [%] of the Extreme Learning Machine (ELM)
for a particular activation function and dataset with given samples and features
number. The bold values indicate the top five ACC for a selected dataset among
activation functions, while the italicized values represent the five functions with
the lowest ACC.
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Sigmoid Linear Unit (SiLU ) f(x) = x
1+e−x ,. For the following activation func-

tions details can be obtained in [15]: Sigmoid , Swish , Exponential Linear
Squashing (ELiSH ), TanH , HTanH , Rectified Linear Unit (ReLU ), Expo-
nential Linear Units (ELUs), SoftPlus, Leaky ReLU (LReLU ), Scaled Ex-
ponential Linear Unit (SeLU ), ReLU6 , Mish , Gaussian Error Linear Units
(GELUs), Scaled Exponential Linear Units (SELU ), Randomized Leaky ReLU
(RReLU ). In this paper, α and β are set to 1 as the selection of activation func-
tion parameters is beyond the scope of this research.

To provide the meaningful comparison between various activation functions
10 different datasets were used. The datasets are made publicly available by the
UCI Machine Learning Repository for the purpose of classification tasks and are
commonly used in ML [16]. For simplicity in further considerations datasets are
marked as A, . . . , J , where A - Australian credit card applications, B - Breast
Cancer, C - Wine-Red, D - Musk, E - Sonar, F - EyeState, G - Dry Bean, H -
Ionosphore, I - DNA and J - Vehicle. The experiment’s results are presented in
Tab. 1 and are analyzed in the conclusions section below.

4 Conclusions

The results (see Tab.1) indicate that some activation functions performed poorly,
including BSF, Cosine and SCELU, which exhibited the worst results for all
datasets (being 10 times in bottom 5 ACC). With high confidentiality we can
exclude these functions from practical usage for ELM. On the other hand, the
Mish (9 times), Sexp (8), SoftPlus (6), Maxout-ELUs (4) exhibited superior per-
formance across datasets being in top 5. Noteworthy, each of these functions has
never been chosen as the worst 5 for a given dataset. Identity and sinusoidal
functions were in the top 5 for the 4 times, but simultaneously each of these was
also once noted as the bottom 5. Their usage may be beneficial only for some
of the assignments. Our experimental results demonstrate the exceptional gen-
eralization capabilities of Mish and Sexp activation functions for ELM. These
functions have consistently performed well across 10 diverse datasets, encom-
passing various classification tasks. They have exhibited strong performance
even when applied to datasets with varying numbers of features and samples.
In contrast, the effectiveness of other activation functions has been more reliant
on the specific characteristics of the tasks. Notably, the accuracy of the ELM
classifier can differ significantly, up to 80 percentage points, depending on the
chosen activation function. Therefore, it is crucial to evaluate the efficacy of
activation functions for each task to ensure optimal classifier performance. Our
experimental results highlight the promising potential of Mish activation func-
tion for ELM. Mish, a relatively new activation function in Deep Learning, has
not been extensively utilized in ELM until now. Based on the obtained results
we can straightforward conclude that the ELM’s performance with selected acti-
vation cannot be measured on a single dataset as there is no guarantee that the
activation function’s generalization abilities will be sufficient for a given task.
The analysis did not reveal any significant correlations between the number of
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features or samples and the performance of activation functions. Instead, the
results suggest that the performance is closely tied to the characteristics of the
specific classification task. This observation opens up avenues for future research,
particularly in exploring the implications of Universal Approximation theorems
for ELM. Further research on the Mish and Sexp activation functions applied in
ELM should be conducted to examine their performance on more datasets. It
would also be beneficial to introduce optimization strategies to the values of α
and β for specific activation functions.
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