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Abstract. In a broad range of real-world machine learning applications,
representing examples as graphs is crucial to avoid a loss of information.
For this reason, in the last few years, the definition of machine learning
methods, particularly neural networks, for graph-structured inputs has
been gaining increasing attention. In particular, Deep Graph Networks
(DGNs) are nowadays the most commonly adopted models to learn a rep-
resentation that can be used to address different tasks related to nodes,
edges, or even entire graphs. This tutorial paper reviews fundamental
concepts and open challenges of graph representation learning and sum-
marizes the contributions that have been accepted for publication to the
ESANN 2023 special session on the topic.

1 Introduction

In this tutorial paper, we introduce the core concepts related to Graph Repre-
sentation Learning, which is the subject of a special session organized by the
authors at the 31th European Symposium on Artificial Neural Networks, Com-
putational Intelligence, and Machine Learning. Many critical real-world appli-
cations produce data that can be naturally represented by complex structures
such as graphs. Graphs are particularly suited to represent relations (edges)
between the components (nodes) constituting an entity.

In this paper, we focus our attention on applying Deep Learning models
for learning in graph domains, where Deep Graph Networks (DGNs) [1] are
nowadays the de facto standard. The origins of DGNs can be traced back to
works on directed acyclic graphs [2, 3], where recursive neural networks were used
to automatically extract information from structured data to solve the task at
hand. Current DGNs are capable of modeling cyclic graphs, and the pioneering
methods for this class of models are based on the recurrent [4] and convolutional
[5] paradigms of computation.

DGNs are composed by several layers that can learn representations that
embed information about the entities and their relations. The DGNs can be
divided into three broad categories: (i) the models inspired by neural architec-
tures [6, 7, 8, 9], (ii) the probabilistic models of graphs [10], and (iii) the hybrid
models that leverage both neural and probabilistic models to generate graphs
[11].

Graph-structured data are ubiquitous in nature, therefore there are a vast
number of possible real-world applications of DGNs. These applications can

1

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



u

Nu

O

C

O

O

H H

Fig. 1: Carbonic acid molecule represented as a 2D graph where nodes denote
atoms with their type. The neighborhood Nu of node u is marked by the green
dashed area. Edges represent single or double bonds.

be associated with nodes, edges, or properties of entire graphs. One of the
most common applications of DGNs concerns the predictions over nodes in a
network. An example in this setting is the prediction of properties of a social
network user based on his connections. Another related task involves discovering
the relationships in a social network by performing an edge-level prediction task.
Finally, DGNs can also be used to tackle graph-level prediction tasks. In this
setting, each example is composed of a whole graph, and the learning tasks are
predictions of the properties of the whole graphs. An example is the prediction
of the toxicity in humans of chemical compounds represented by their molecular
graph, of which we show an example in Figure 1.

2 Background Notions

Before describing the functioning of graph representation learning methods, we
first present basic definitions about graphs that are used in the contributions of
this special session. A commonly used formalization of a (static) graph is the
tuple g = (V, E ,X ,A), with V being the set of nodes/vertices and E representing
the set of edges/arcs that connect pairs of nodes. Depending on whether a graph
is undirected ( resp. directed), an edge reflects the unordered (resp. ordered)
interaction between two nodes u, v ∈ V. The sets X and A specify the domain
of node and edge features/attributes, respectively. In the literature, it is very
common to represent attributes on nodes and edges as vectors, but discrete
edge types are also frequently used to encode various kinds of information, for
example a covalent or non-covalent interaction between atoms in chemistry and
physics. In addition, a Knowledge Graph (KG) can be seen as a graph where
connections represent facts about two entities. In this setup, it is often the case
that entities have no features and there are numerous (discrete) relations that
can connect two entities.

The adjacency matrix A ∈ {0, 1}|V|×|V| represents the (binary or weighted)
connectivity information of a single graph. Assuming V = {1, 2, . . . , n}, an
entry u, v of A is non-zero when nodes u and v are connected. Consequently,
adjacency matrices are symmetric when the graph is undirected. At the same
time, the adjacency matrix might not be the best way to represent connectivity
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Fig. 2: We show the contextual information propagation to the hydrogen
molecule (dashed red) of the Carbonic acid. Following two graph convolutions,
the hydrogen atom can access the information at 2-hop distance from itself.

information, especially when the proportion of edges compared to nodes is small;
in this case, we talk about a sparse graph. For sparse graphs, a convenient
representation is an adjacency list specifying the list of neighbors for each node.
The neighborhood of a node v is defined as the set of nodes directly connected
to it: Nv = {u ∈ V | (u, v) ∈ E}.

There are equivalent, namely isomorphic, ways to construct the same graph,
which give rise to the well-studied graph isomorphism problem [12]. In particular,
we can construct the same graph by applying the same random permutation to
the rows and columns of the adjacency matrix and the feature matrix X ∈
R|V|×d, where X ⊆ Rd.

We can extend graphs (and knowledge graphs) to the temporal setting by
adding a time-stamp to each node/edge. If time is discretized, one talks about
graph snapshots, meaning that at each time t we consider a graph with new
nodes and edges. When time is continuous, we model the evolution of the graph
as a stream of events.

Finally, we define the notion of permutation invariance and graph equivari-
ance, which are extremely useful in graph representation learning and used in
the contributions to the special session. A function is said permutation invariant
if it does not change its output when the components of the input are reordered
according to some permutation. The sum, the mean, the maximum and the
product operators are straightforward examples of permutation invariant func-
tions. In the context of graphs, permutation invariance is intended with respect
to the permutation of the nodes. There exist DGNs that are also equivariant,
meaning that their output is subject to the same transformation as the input:
this kind of inductive bias is useful, for instance, in the prediction of chemical
forces, where rotating a molecule rotates the force (or equivalent the accelera-
tion) vector associated with it [13].

3 What is a Graph Convolution?

For the purpose of the tutorial, we will introduce the graph convolution oper-
ator in the context of message-passing architectures [14] since these represent
the most prominent class of models in the literature, even though alternative
approaches are possible, e.g. based on the multi-resolution approach [15, 16].
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A graph convolution is an operation where a function is applied to the nodes
of a graph akin to a convolutional filter on the pixels of an image. The funda-
mental difference is that the neighborhood of each node is irregular and might
evolve over time in unpredictable ways. The framework of message passing [17]
consists of two steps: first, at each graph convolutional layer ℓ, a message is
computed for each node v relying on its current state (or embedding) hℓ

v and
neighboring information; after that, the message is dispatched to neighboring
nodes according to the topological information of the graph. In the second step,
each node collects the incoming messages and uses them to update its own em-
bedding. Formally, we can write this process as

hℓ+1
v = ϕℓ+1

(
hℓ
v, Ψ({ψℓ+1(hℓ

u,auv) | u ∈ Nv})
)
, (1)

where ϕ, ψ are learnable functions such as neural networks, Ψ is a permutation
invariant function like the sum or the mean, auv is the edge feature vector. At
layer ℓ = 0, the node v’s embedding corresponds to the node feature vector x0

v.
By stacking graph convolutions on top of each other, one can propagate

information across the graph and build rich node embeddings. These embeddings
can be fed into standard machine learning predictors for node and link prediction
tasks. When tackling whole-graph prediction problems, an additional step of
global pooling is required before being able to make predictions:

hℓ
g = Ψ

(
{f(hℓ

v) | v ∈ Vg}
)
, (2)

where, with slight abuse of notation, Ψ is another permutation invariant function
and f is another learnable function. Typically, the last layer representation is
used to make predictions, but the concatenation across layers is also a viable
and effective alternative [10, 18].

Message passing has become a successful framework for graph representation
learning due to several key characteristics. First and foremost, message passing
breaks down the cyclic dependencies within a graph that, under the above local
processing assumption, cause an infinite (recursive) definition of a node’s embed-
ding. By iteratively passing messages between neighboring nodes, as shown in
Figure 2 each node can incorporate and disseminate contextual information from
its local neighborhood, enabling (at least in principle) a holistic understanding
of the graph’s structure and features.

Akin to convolutions on images, each message passing step is amenable to
parallel computation on all nodes, which is crucial when handling large-scale
graphs. Because message passing operates locally on individual nodes, compu-
tations can be easily distributed across multiple processors or computing units,
resulting in significant speed-ups.

Another advantage of message passing is its invariance to the permutation of
nodes. By leveraging the permutation invariant function Ψ, the neighborhood
aggregation learns representations that remain consistent regardless of the node
ordering. This invariance to permutation is particularly useful because cyclic
graphs do not come with a pre-defined node ordering.
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Lastly, message passing is agnostic to the size of the graph and the neigh-
borhood of each node. Whether the graph is sparse or dense, and regardless
of the number of neighbors each node has, the message passing framework can
adapt and accommodate various graph topologies. This flexibility is crucial for
generalizing to unseen graph topologies.

In summary, the success of message passing stems from its ability to break
down cycles, facilitate efficient parallel computation, exhibit invariance to node
permutations, and handle graphs of different sizes and neighborhoods. These
characteristics make it a powerful and versatile framework for graph represen-
tation learning. At the same time, message passing has its own limitations to
be still solved, and we mention in particular oversmoothing and oversquashing.
Oversmoothing occurs when the iterative message passing process ultimately
results in overly similar representations for different nodes in the graph. As
the number of message passing steps increases, the learned representations may
become increasingly indistinguishable, losing the ability to capture subtle differ-
ences and fine-grained features that are essential for accurate downstream tasks.
On the other hand, oversquashing refers to the problem of information compres-
sion or loss during the message passing process. As messages are aggregated
and combined, there is a risk of losing important details and nuances present in
the original node features. Oversquashing can be particularly problematic when
dealing with graphs that exhibit high topological complexity.

4 Promising Directions

Learning relational information The success achieved by DGNs largely relies
on the suitability of the considered relational information which, not rarely,
is incomplete or completely missing at design time. As demonstrated in the
literature, addressing link prediction and multi-node representation tasks fol-
lowing standard graph deep learning setups turned out to be cursed by inherent
limitations [19]. In addition, graph transformers – despite their ability to auto-
matically extract relevant pairwise relations – suffer from poor scalability with
larger graphs [20], while enabling efficient learning through sparse computational
graphs requires dedicated gradient estimators [21].

Spatio-temporal data Graph deep learning has recently become popular in the
processing of spatio-temporal data too, which involves interconnected entities
generating data observations over time, such as those coming from meteorological
monitoring, transportation networks, epidemic models, and social sciences [22,
23, 24]. In this context, new challenges emerge primarily associated with the
possible appearance of new nodes and changes in the relational information over
time, missing data, irregular sampling, and scalability [25, 26, 27], showing that
there is still a long way to go in terms of developing mature solutions.

Probabilistic models As per any machine learning problem, dealing with uncer-
tainty associated with the data-generating process and the learned model can be
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the key to accurate and trustworthy DGN solutions. Despite the recent progress
in integrating DGNs with probabilistic components [28, 29, 30], estimating the
uncertainty associated with combinatorial objects like the adjacency matrix and
estimating non-factorized probability distribution over graphs are two of the
most challenging problems.

Biophysics and chemistry Lately, there has been growing research focus on em-
ploying DGNs to model complex interactions in physical and biological systems,
where the use of graph-based processing holds great potential for, e.g., scalable
computer-aided simulations of fluid dynamics, prediction of molecule properties,
analyzing extensive databases derived from particle physics experiments, and
discovery and repurposing of drugs [31, 32, 33, 34]. Indeed, these applications
further emphasize the importance of the above-mentioned research directions.

5 Special Session’s Contributions

This year’s special session comprises several original contributions ranging on a
set of diverse topics related to the graph representation learning field:

• Landolfi et al. [35] investigate the relationship between Graph Neural
Networks and tropical algebra in the context of learning Dynamic Pro-
gramming (DP) algorithms [36]. Specifically, they show that a Graph Iso-
morphism Network (GIN) [37] coupled with a proper encoder and decoder
functions can approximate several interesting DP algorithms on graphs up
to arbitrary precision, effectively drawing a connection between the two
fields.

• Wang et al. [38] present a method to extract categorical embeddings from
data by applying Differential Pooling (DiffPool) [39] on a graph where the
adjacency matrix is the co-occurrence matrix of categorical values, and the
feature matrix is the one-hot encoding of the categorical features.

• Errica et al. [40] propose a deep Hidden Markov Model for temporal
graphs. The model consists of a stack of layers which perform probabilistic
message passing, trained with Expectation-Maximization. They apply the
model to temporal node prediction tasks, with results comparable to neural
approaches.

• Tortorella et al. [41] analyse the richness of the node embeddings learned
by Graph Echo State Networks [6]. Specifically, they study how the quality
of the node embeddings affects the accuracy in classification tasks. To
facilitate the analysis, they propose an entropy-based measure to quantify
the information carried by a node embedding. With the aid of this tool,
they compare for the first time different reservoir designs for Graph Echo
State Networks on node classification tasks.

6

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



• Torres et al. [42] propose a DGN-Transformer architecture specifically
designed for the prediction of toxicity and side-effects of chemical com-
pounds, where labeled data is historically scarce. In the few-shot scenario,
they show that the proposed architecture can outperform standard DGNs.

• Vu et al. [43] present an architecture for link prediction on knowledge
graphs. In order to learn better entity-relation embeddings, they first
transform the entity embeddings similarly to 2D images, then apply a
combination of MetaFormer and Fast Fourier Transform layers as feature
extractors, outperforming common baselines.

• Navarin et al. [44] investigate the over-parameterization regime in the
context of untrained graph neural models. In particular, they combine
an approximation of the algorithmic stability measure with empirical ev-
idence to understand when over-parameterization allows these models to
generalize better.

6 Conclusions

With this tutorial and the corresponding ESANN 2023 special session, we aim
to give an overview of the machine learning models and techniques that are
nowadays applied in learning from graphs. Indeed, graphs can be the key to
solving complex problems related to fields where the intrinsic nature of the datum
is relational, such as biology, network science, graphics as well as chemistry.
Among the recent research directions that have drawn attention, we highlighted
some of the most promising ones. In the final section of the article, a summary
of the interesting papers presented at the special session is provided.
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[12] Johannes Kobler, Uwe Schöning, and Jacobo Torán. The graph isomorphism
problem: its structural complexity. Springer Science & Business Media, 2012.

[13] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P
Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E Smidt, and Boris
Kozinsky. E (3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. Nature communications, 13(1):2453, 2022.

[14] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural Message Passing for Quantum Chemistry. In ICML,
pages 1263—-1272, apr 2017.
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