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Abstract. Although safe reinforcement learning control for exoskele-
tons shows great potential, established real-world applications seem rare.
There is a dilemma: the safe RL agent is either robustly safe and compu-
tationally demanding or not robustly safe but computationally cheap. We
propose Estimated Uniform PAC (EUPAC) as a new safety heuristic. We
show that our EUPAC algorithm differentiates safe from unsafe system
behaviour with high significance (p < 0.001) while having a linear worst
time complexity.

1 Introduction

Exoskeletons in close proximity to human users obviously cannot allow for catas-
trophically unsafe behaviour, which in contrast is somewhat needed for reinforce-
ment learning (RL) agents to explore the learning space properly.

Learning control needs to be safe. Following [1], the underlying methodolo-
gies of modern safe learning approaches revolve around changing the optimiza-
tion criterion and changing the exploration process.

Nowadays, most prominent approaches to changing the optimization criterion
are added constraints that ensure safety. There are Control Barrier Functions
(CBF) [2, 3] and constraints from Hamilton-Jacobi-Bellman reachability analysis
[4]. Though their theoretical guarantees are strong, their computational cost can
be high. They restrict the exploration process, need demanding hardware which
in turn can be detrimental to the user experience. The latter is particularly
relevant for exoskeletal systems, as cost, weight, and comfort are important
design considerations. [5].

Changes to the exploration process are made by risk-aware heuristics [6] or by
initial or on-the-fly knowledge demonstrations [7, 8]. Risk-aware heuristics are
computationally cheap, but cannot guarantee strong confidence bounds around
the estimated safety. Knowledge demonstrations introduce data bias, that can
reduce learned optimality.

Strong guarantees of safety may be an intuitive demand without question
but the cost in performance may also be a crucial hinderance for real-world ap-
plications [9]. This is a dilemma: the Safe RL agent can either be safe with high
certainty but computationally costly or heuristically safe and computationally
cheap.
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Can there be a strongly guaranteed (that is, more robust) safety heuristic
which is computationally cheap? For this purpose, we derive a numerical estima-
tion of the Uniform PAC (UPAC) learning performance bound [10]. It bounds
all possible tolerance errors for regrets happening in a learning setting which
is more robust than and even implies PAC [11] and Uniform High Probability
Regret bounds [12]. In a preliminary simulative safety benchmark we illustrate
Estimated UPAC (EUPAC) by Interval Checking: a heuristic that identifies safe
agent behaviour, is more robust, and has cheap computational cost.

2 Uniform PAC-Learning and its estimation

A reinforcement learning problem consists of a (possibly in)finite number of
states S, (possibly in)finite number of actions A, time steps k with a total of
H per episode. We define regret functions ∆ : R → R≥0 by reward ∆R(Rk) =
Rmax − Rk with rewards at the current time step Rk and the optimal reward
Rmax, and by observation ∆S(sk) = max {sk − su, sl − sk, 0} with the current
state sk, its safe upper limit su and its safe lower limit sl. Uniform PAC (UPAC)

P (∀τ > 0 : Nτ (Ω) ≤ F (S,A,H, 1/τ, log (1/δ)) ≥ 1− δ

necessitates the number of τ -regrets Nτ (Ω) =
∑

∆∈Ω 1∆>τ to be less than a
polynomial upper bound F in S, A, H, 1/τ and log (1/δ) with probability 1− δ
for all τ [10].

To make UPAC usable as an online heuristic, we derive a numerical esti-
mate. This encompasses 1) linking the UPAC probability to a window of W ′

seen regrets ΩW ′ and their density P∆, and 2) checking if the resulting regret
probability fulfills the UPAC condition at the current timestep k. For a detailed
derivation, please refer to the supplemental material on the GitHub repository
github.com/flxweiske/eupac.

It can be shown that Estimated UPAC (EUPAC)

EUPAC(Ω) =
∑
k

P(ΩW ′, k)P
(
∀τ > 0 : Nτ (ΩW ′, k) ≤ max

(
F̄ (1/τ), 0

))
(1)

is a numerical estimate of UPAC. Since Nτ is at most W ′, gets reduced by 1 at
any τ = ∆i and cannot be lower than 0, it is a descending stair function that
allows UPAC to be checked for τ across W ′ intervals individually. Quantifier
elimination reduces the UPAC criterion to a set of interval conditions on EUPAC
parameters and seen regrets ∆i (see Table 1). If

∃τ : Nτ > F̄ =

W ′,2∨
i,j

Cτ
i ∧ CF̄

j ∧ CEUPAC
ij

is true, the agent is prone to be more unsafe. Vice-versa, regrets that are safe
by the UPAC criterion will add to the EUPAC value by their probability of
occurence – the agent is deemed more safe. We calculate EUPAC by Interval

684

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



∃τ : ¬E CF̄
1 : F̄ = c1 + c2/τ > 0 CF̄

2 : F̄ = c1 + c2/τ < 0
Cτ

1 : 0 < τ < ∆1 CEUPAC
11 : W > c1 + c2/τ CEUPAC

12 : W > 0
Cτ

i : ∆i < τ < ∆i+1 CEUPAC
i1 : W − i > c1 + c2/τ CEUPAC

i2 : W − i > 0
Cτ

W : τ > ∆W CEUPAC
W1 : 0 > c1 + c2/τ CEUPAC

W2 : 0 > 0

Table 1: Interval conditions that result from the descending stair of Nτ

Checking with Algorithm 1. Our implementation will use multinomial subsets
of the seen regrets. To bound the inherent computational burden we actually
bin those into W regrets defined by the W + 2 boundaries N∆(ΩW ) = F̄ (1/∆).
For further details, please refer to the supplemental material on the GitHub
repository.

Algorithm 1 General steps of EUPAC by Interval Checking

Observe new regret window ΩW ′, k

Bin into regret window with fixed size W
Get a new regret probability estimate Pk

∆ for the binned regrets ΩW

Average with the previous regret probability estimate Pk−1
∆ via some α

Calculate EUPAC by Interval Checking (1) across all multinomial cases of
sample size NMN with the underlying regret probability estimate

3 Safety Benchmark

Main purpose of the benchmark is to show that EUPAC by Interval Checking 1)
distinguishes safe and unsafe agent behaviour, 2) is more sensitive to unsafe than
safe behaviour and 3) is computationally cheap, that is it has subexponential
time complexity.

We studied impedance controlled pendulum system environments between
1 and 3 degrees of freedom that allude to sagittal leg movement models for
exoskeletons [13, 14] with suitable parameters [15]. A joint is deemed to be safe
if its angle is between the biomechanically feasible thresholds [13].

The reinforcement learning problem learns across all-together 2 million learn-
ing steps with 500 timesteps each episode (simulated time of 5 seconds) to achieve
a random target position known to the agent. The driving reward-function con-
sists of four components: 1) distance to current target in cartesian coordinates,
2) discrete bonus for high proximity to the target of 100, 3) action regularization
with a factor of 0.1 and 4) a duration punishment of -1 at each time step the agent
has not achieved high proximity. We use three of the most prominent model-
free algorithms DDPG [16], TRPO [17] and SAC [18] to show their individual
learning development. To test EUPAC-Safety we use CBF-based compensating
control in an end-to-end RL perspective [19] as a wrapper for environments with
safe joint dynamics, that is generally safer environments. EUPAC settings can
be found in the supplemental material on the GitHub repository.
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w/o CBF w/ CBF stat. diff. (p-Value)
∆R 698± 978 319± 560 no (p = .0760)

EUPAC 64%± 47% 81%± 38% yes (p = .0115)
∆S 0.31± 0.23 0.03± 0.07 yes (p < .0001)

EUPAC 33%± 47% 78%± 39% yes (p < .0001)

Table 2: Statistical difference for regret and corresponding EUPAC with Mann-
Whitney-U because of non-normality of all groupings averaged across all simu-
lations

The benchmark ran on a Intel i7-10870H with 2.2 GHz and a GeForce RTX
3060. Implementations use Python with Numpy, Scipy Optimization, Tensor-
flow, and Stable Baselines [20]. EUPAC by Interval Checking and all of the
supplemental material can be found on the GitHub repository.

4 Results

Table 2 summarizes the results for EUPAC to distinguish safe from unsafe be-
haviour. The values for EUPAC show statistically significant differences for
unsafe and safe behaviour with regrets by reward and regrets by observation
even if there is no distinction in the respective regrets.
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Fig. 1: Typical EUPAC values alongside the regret learning curve

To illustrate the robustness of EUPAC with respect to various regret values,
we look at a typical regret learning example (Fig 1). After the initial learning
phase between 0% and around 10% of learning episodes, the agent achieves on
average lower regret values. Note that as soon as the first regret reaches a
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NMN W ′ = 1 W ′ = 10 W ′ = 100 W ′ = 1000
3 0.0021s 0.0021s 0.0021s 0.0023s
5 0.0280s 0.0281s 0.0281s 0.0283s
8 1.6613s 1.6566s 1.6637s 1.6717s

Table 3: EUPAC calculation time in seconds for different multinomial sampling
sizes NMN and seen regret windows W ′

value of around 500, EUPAC raises up until around 20%. At around 20% of
learning episodes, regrets start to get worse from around 400 to around 1000.
For those EUPAC immediately forms a local maximum. Now, although the
following regret values get better again, EUPAC falls back and stays at 0%.
Only after having seen more safe regrets across more learning episodes, EUPAC
starts to rise again around 40% of learning episodes. EUPAC reacts immediately
to worsening regrets, whereas several better regrets are needed to get EUPAC
better again. The same arguments can be made between around 45% and 50%,
and 60% and 70% of learning episodes.

Table 3 shows average calculation times for EUPAC by Interval Checking
with differing NMN and W ′ across 10 trials each. It is clear that the influence
of NMN dominates the little to no effect from changing W ′. Note that with one
EUPAC setting NMN and W are fixed across evaluations. This leads EUPAC
by Interval Checking to have a linear worst time complexity with O(W ′) mainly
due to binning.

Although these results are based on a preliminary simulated safety bench-
mark with pendulum systems, these properties should generalize well since the
present regret function contains sufficient information about system safety. To
validate this claim, future work should focus on applying EUPAC to other bench-
marks. Since EUPAC is a measure that evaluates safety without interfering with
the learning itself, one exciting direction of following works is the use of EUPAC
in-the-loop.
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