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Abstract. Continual Learning trains models on a stream of data, with
the aim of learning new information without forgetting previous knowledge.
Given the dynamic nature of such environments, explaining the predictions
of these models can be challenging. We study the behavior of SHAP values
explanations in Continual Learning and propose an evaluation protocol to
robustly assess the change of explanations in Class-Incremental scenarios.
We observed that, while Replay strategies enforce the stability of SHAP
values in feedforward/convolutional models, they are not able to do the same
with fully-trained recurrent models. We show that alternative recurrent
approaches, like randomized recurrent models, are more effective in keeping
the explanations stable over time.

1 Introduction

Continual Learning (CL) studies the challenges of training models in dynamic
environments, where data distribution drifts over time. When trained on such non-
stationary data, neural networks have been shown to forget previous knowledge.
Explaining neural network predictions is an inherently difficult task at the center
of eXplainable Artificial Intelligence (XAI) [1], and can be even harder when
models are updated on drifting distributions. How will the explanations change in
a CL scenario? How the effect of non-stationarity can be shown in an explanation?

There are very few works at the intersection of CL and XAI. In [2], the authors
mitigate forgetting by enforcing visual explanations (i.e., feature maps) stability
during CL with Replay. More recently, [3] introduced a regularization-based CL
approach to keep prototypes stable as new classes are learned. In both works, the
focus is on the design of a CL approach that mitigates forgetting. Here, we are
interested in quantifying the degree of change of an explanation and studying the
role played by the data domain (images vs. sequences), the model architecture
(feedforward/convolutional vs. recurrent), and the type of CL strategy.

In this paper, we tackle XAI for CL by quantitatively and qualitatively assess-
ing the behavior of one of the most used XAI techniques, i.e., SHAP (SHapley
Additive exPlanations) [4], in a supervised CL scenario (Class-Incremental) where
new classes are encountered over time. Further, we propose an evaluation protocol
(including two metrics) that takes into account the non-stationary nature of the
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environment. It considers a candidate explanation for each possible class and
makes a comparison across all of them. In this way, we are not only looking at
the explanation associated with the target class. In fact, in a CL scenario, there
is no guarantee that the model will always be able to classify the same example
correctly. Moreover, at test/deployment time, the correct class is unknown.
Our protocol breaks free from trusting the model prediction or from relying on
external information.

We assessed our evaluation protocol on 3 CL benchmarks, from the computer
vision and audio processing domains. We compare the drift of explanations when
using CL strategies with respect to the model jointly trained on all data at once.
We discovered that Replay strategies are effective in preventing drift, as expected.
However, the behavior of Recurrent Neural Networks (RNNs) is peculiar, since,
surprisingly, explanations drift more with Replay than with no CL strategy. We
show that the issue is related to the fully-trained recurrent component. In fact,
we were able to prevent explanation drift by using a random recurrent model,
without losing predictive accuracy. To the best of our knowledge, we are the first
to study how SHAP values change in a CL setting and to highlight the peculiar
case represented by explanations in RNNs.

2 Continual Explanation

In a CL scenario, a model h faces a stream of experiences e1, e2, . . ., where each ei
corresponds to a dataset of input-target pairs Di = (xj , yj)

Ne
j=1 (supervised CL).

The model is trained on one experience after another. We focus on the popular
Class-Incremental scenario, where each experience introduces a new set of target
classes that never reoccur in future experiences. This scenario is well-known to
induce a large amount of forgetting in the model: after training on an experience
ei, the accuracy on the test set of experiences ej , j < i largely deteriorates.

Our proposed evaluation protocol uses SHAP to explain the importance
of each input feature, i.e., the contribution of each feature toward the model
prediction. In simple terms, SHAP computes this contribution by perturbing the
input instance x using the mask z′ ∈ {0, 1}K to decide which of the K feature
values to keep or replace in x. The contribution of each feature to the model
output is computed by observing how the model output changes depending on
different perturbations. In this way, a positive or negative SHAP value ϕ is
assigned to each feature value, and the resulting explanation is represented as an
additive feature attribution method. Formally: g(z′) = ϕ0+

∑K
k=1 ϕkz

′
k. In other

words, given an input x, the explanation model g tries to linearly approximate
the output of a model f in the local neighborhood obtained by perturbing x, i.e.,
g(z′) ≈ f(x). The term ϕ0 denotes the base value, i.e., the default prediction
for an “empty” instance. Since we compute SHAP against each possible class,
we only consider positive SHAP values, by clamping negative values to 0. This
allows us to investigate how much each input feature (e.g., pixels in images)
drives the prediction toward the candidate class. In such a scenario, we compute
the SHAP values at the end of training on each experience.
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As a “ground truth” reference, we compute the SHAP values of the model
jointly trained on the union of all the experiences, in an offline fashion (Joint
Training). This model is immune to forgetting since it does not learn continuously.
To evaluate the performance of different CL strategies, we propose two novel
metrics. The first metric M measures how much the SHAP values drift from the
ones of the jointly trained model. For each candidate class (output unit of the
model), M is defined as follows:

M(S, J) =
1

K

( K∑
i=1

Si −
K∑
i=1

Ji

)2

, (1)

where S contains the positive SHAP values for a given strategy S and J contains
the positive SHAP values for the Joint Training strategy. Both S and J contains
K elements.

For computer vision experiments, the metric M of Eq. 1 may fail to capture
the spatial dependencies between pixels. The sum, in fact, compares SHAP
values independently of their position in an image. We monitor spatial locality
by proposing a second metric:

Mpool(S, J) =
1

P

P∑
i=1

(pool(S, 4)i − pool(J, 4)i)
2, (2)

where “pool” represents a 2D average pooling operation with a kernel of 4x4
pixels and P is the number of pixels produced by the pooling operation. SHAP
values are normalized to have zero mean and unitary variance. The normalization
allows us to compare the distribution of the positive values instead of the scale
(which is taken into account by the metric M in Eq. 1). Metric Mpool includes
spatial locality since it compares neighborhoods of 4x4 pixels from one strategy
against the corresponding neighbor from Joint Training.

3 Experiments

For our experiments, we choose two CL benchmarks from computer vision: Split
MNIST and Split CIFAR-10. Both of them have 5 experiences, with 2 classes
in each experience. In the same setup, we also study the Synthethic Speech
Commands (SSC) benchmark [5], which is composed of pre-processed audio
sequences of 101 steps with 40 Mel features. We leverage a feedforward network
on MNIST, a ResNet18 on CIFAR-10, and an LSTM on SSC.

We employ two Replay strategies, GSS [6] and Experience Replay (ER), that
mitigate forgetting by augmenting each mini-batch from the current experience
with a sample from a fixed-size memory of examples from previous experiences.
Also, we use the Naive strategy, a lower bound baseline that simply fine-tunes
the model h on the stream of experiences without any CL technique. We ensure
that CL models achieve a performance (average accuracy on the test sets of all
experiences after training on the last experience) that is on par with the expected
CL performance for each strategy.
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(a) Naive

(b) ER

Fig. 1: Positive SHAP values after training on the last experience. The first
column shows the input image, and the other ten columns show the SHAP values
for each class (the more active, the higher the pixel’s contribution toward the
class). Replay is able to effectively preserve the SHAP values for class 0 and
class 1, while Naive is mostly activated by class 8 and 9 (forgetting).

We compute SHAP values for the examples in the first experience e1, since
it is the experience that suffers forgetting the most after training on the entire
stream. We use 600 examples as background and 50 per class as a test, taken
from the test set of e1. For each strategy (Naive, GSS, ER), we compare the
SHAP values w.r.t. the model jointly trained on ∪iDi. For our implementation,
we use the Avalanche library [7] and GradientSHAP [4], i.e., a SHAP version
tailored to neural networks1.

Figure 1 shows the SHAP values saliency maps for each candidate class for
MNIST. We can clearly see that the last columns (output units) of the images
are more active in Naive than in ER. This means that the model is erroneously
choosing the last two output units in place of the correct ones (the first two units).
We observed the same behavior also on CIFAR-10. This, perhaps intuitive, result
highlighted the role of forgetting in SHAP and motivated us to quantitatively
measure its change with M and Mpool.

Figure 2 shows results for metric M . The Naive strategy drifts much more
than the Replay strategy for the target class (either 0 or 1, denoted by the dots).
However, Naive usually better preserves SHAP values for the last classes (e.g., 8
and 9), where M is closer to zero than in Replay. This is reasonable, since Naive
blindly optimizes on the current experience up to the last one, while Replay
strategies are constrained by the limited replay buffer containing examples from
previous classes. Note that this is also aligned with the previously discussed
results from Figure 1. Similar results hold also for Mpool in MNIST and CIFAR-
10 (Table 1), showing that Replay better preserves explanations even when
considering the spatial locality of the pixels.

Interestingly, RNNs on SSC show a completely different behavior, as shown
by the third row of Figure 2. Although the Replay performance in terms of
accuracy is better than the one of Naive (80/90% vs. 20%), SHAP values of

1The code to reproduce all experiments can be found at explainable-continual-learning
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(a) Naive on MNIST (b) GSS on MNIST (c) ER on MNIST

(d) Naive on CIFAR (e) GSS on CIFAR (f) ER on CIFAR

(g) Naive on SSC - LSTM (h) GSS on SSC - LSTM (i) ER on SSC - LSTM

(j) Naive on SSC - ESN (k) GSS on SSC - ESN (l) ER on SSC - ESN

Fig. 2: Metric M for each strategy and benchmark (lower is better). In each plot,
the x-axis represents the number of classes in the dataset. The dots indicate the
value of M for the output unit corresponding to the target class. Each curve is
averaged over 50 examples from the test set.

Replay strategies drift much more for RNNs. This counter intuitive result prove
once more the unexpected behavior of fully-trained recurrent models in CL [5].
Inspired by [8], we ran experiments on SSC with Echo-State Networks (ESNs).
These are RNNs with a fixed recurrent component. ESNs achieve comparable
performance in terms of accuracy with respect to LSTM, while also preserving
the stability of SHAP values (Figure 2, last row). Similar results are obtained
when using a shallow 1D Convolutional network in place of an RNN, pointing at
the fact that the main issue in the drift of explanations comes from the trained
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Naive GSS ER

C0 C1 C0 C1 C0 C1

MNIST 2.9e-4 2.5e-4 1.5e-4 1.4e-4 1.4e-4 1.5e-4

CIFAR-10 1.1e-3 6.0e-4 1.6e-4 1.5e-4 2.8e-4 2.8e-4

Table 1: Metric Mpool for each strategy and vision benchmark (best Mpool in
bold for each class). The metric is shown for target classes 0 and 1 only (the
dots in Figure 2). The behavior on the other classes follows the one of Figure 2.

recurrent component in the LSTM and not from the recurrence itself.

4 Conclusion

We studied how SHAP values change in a CL environment. Our evaluation
protocol compares all candidate explanations (one for each candidate class) and
introduces two metrics to measure the drift with respect to a jointly trained
model. Replay strategies are effective in preserving the stability of explanations.
However, when using fully-trained recurrent models (e.g., LSTMs), explanations
drift from the ones of Joint Training, while prediction accuracy remains high.
Similar behavior has been documented when looking only at the predictive
accuracy across different CL strategies [8], but it was unknown for XAI techniques.
Leveraging random recurrent models like ESNs effectively mitigates this effect.

We believe that continuously monitoring the explanations of a neural network
is an important challenge that can impact both the design of XAI solutions and
our understanding of what happens inside a CL model.
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