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Abstract. Meta-learning models learn to generalise to unseen tasks at test time.
We introduce a meta-learning algorithm which balances (global) generalisation with
a (local) adaptive mechanism allowing the meta-learner to deal with potentially
substantial heterogeneity in the task distribution. The proposed meta-learner flexibly
consolidates shared components (responsible for generalisation) with task-specific
components. The latter components are adapted, in a data-driven manner, based on
estimating the similarity between the meta-test task in hand and the training tasks.
Experiments demonstrate improved performance on few-shot learning benchmarks,
both general and others involving a more heterogeneous set of tasks.

1 Introduction

One of the distinguishing features of human intelligence is the ability to understand
new concepts, something which machine learning algorithms aim to emulate [1]. Meta-
learning (ML), or learning-lo-learn [2, 3, 4, 5], is a machine learning paradigm addressing
these issues. ML algorithms learn from data belonging to some tasks in order to perform
on other tasks which were unobserved during meta-training.

To better understand the problem in hand, humans are adept at implicitly assessing
similarities with previously encountered tasks. A human asked to go from point A to B
in a certain city can assess which characteristics of the roads are city-specific and which
are salient across cities. Most of the current ML algorithms generically establish a single
ML model without leveraging any adaptation to the meta-test task in hand.

We propose an ML algorithm which aims at getting the best of both worlds: It
globally learns a general ML model, while being (locally) adaptive to every meta-test
task. Rather than being limited to rigidly applying a pre-specified number of gradient
steps to the ML model when encountering a meta-test task, the proposed ML algorithm
can as well adapt its task learning by estimating the similarity between the training tasks
and the current meta-test task. Similarities are compared over a low-dimensional space.

We perform experiments on three few-shot learning (FSL) benchmarks, achieving
state-of-the-art (SOTA) results in general FSL settings as well as in settings involving
more heterogeneity in the task distribution.

To summarise, our principal contributions can be described as follows:
• We propose the probabilistic adaptation for meta-learning (PAML) algorithm which

can address high levels of heterogeneity in the task distribution (Section 2).
• The proposed PAML efficiently adapts the ML optimisation to each meta-test task.
• State-of-the-art results on three FSL benchmarks demonstrate the efficacy of PAML

to learn from heterogeneous sets of tasks (Section 3).
∗Work mostly done while at the University of Cambridge, Machine Learning Group (MLG), UK.
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2 Probabilistic Adaptation for Meta-Learning (PAML)

In meta-learning (ML), the generalisation power is key to succeed in learning from
unseen tasks. Yet, the prospect of learning a single ML model which is optimal for every
unseen task can be unrealistic (no free lunch). To that end, we introduce the Probabilistic
Adaptation for Meta-Learning (PAML) algorithm, which efficiently automates a (local)
adaptation procedure for each meta-test task based on the most similar training task.

Notation and problem setup. Let X and Y refer to the input and output spaces,
respectively, and let X and Y refer to the input and output variables. A task T is
characterised by a data distribution D on X , and a labeling function f . A hypothesis
space H is a space of functions h. Under a distribution DT , the error of a hypothesis
h w.r.t. the labeling function fT is depicted by: εT (h, fT ) := Ex∼DT [|h(x)− fT(x)|].
We address a few-shot (K-shot) meta-learning setup where the model is trained on
T tasks drawn from a task distribution Pr(T ). During meta-training, two samples
are drawn from each training task Ti. The first sample contains K points per class
Sttr = ({xttri ,yttri )}Nti=1

1, and there is another sample Stts = ({xttsi ,yttsi )}Mt
i=1, where

t ∈ 1, . . . , T is the (training) task index, Nt and Mt are the two sample sizes of task t.
For every meta-test task, solely Sttr is observed whereas Stts is used for evaluation.

2.1 The PAML Model

The PAML model involves shared parameters and task-specific parameters. Updating the
shared parameters depends on all the tasks. The task-specific parameters are adapted
based on the most similar training task. The level of involvement of the adaptation in the
optimisation procedure is learnt in a data-driven manner.

Let tasks T1, . . . , TT refer to the training tasks, and refer to the current test task as
Tz , with task-specific parameters θz . Denote by α the shared parameters. The most
similar task to Tz is determined out of the training task-specific parameters θ1, . . . , θT .

2.2 Parameter Learning

The first step in updating the task-specific parameters θz is conceptually similar to
previous ML frameworks, e.g. MAML [6]. Starting from an initial condition θ, a few
gradient steps are taken based on the training sample Sttr :

θz = θ − γ1∇θεz(hθz , fz) (1)

where the hyperparameters γ1, γ2 and γ3 (the latter two are shown later) are learning rates.
The number of the gradient steps (we show one for simplicity) is another hyperparameter.

The second phase is to adapt θz based on the most similar training task T NN. Due to
the first phase in (1), the learner has already become informed about Tz , which enables
it to search for the most similar training task. To determine TNN, the classification
output (probabilities per class) of θz on the sample Sttr of task Tz is compared to the
corresponding output of θ1, . . . , θT on the same sample Sttr . This is done by placing a
softmax layer denoting classes of the current task Tz on top of θ1, . . . , θT .

1Nt = K×number of classes.
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A total of T pairwise comparisons of the probabilistic outputs between Tz and
T 1, . . . , T T are performed using the cosine similarity. The most similar task TNN is the
one achieving the highest similarity to Tz . Refer to the cosine similarity as sim, to the
dot-product as ·, and to a task output on Sttr as fT (Sttr ):

sim(z, j) =
fz(S

ttr ) · fj(Sttr )
‖fz(Sttr )‖‖fj(Sttr )‖

, j = 1, 2, . . . , T (2)

The index of the most similar task TNN is the one maximising (2):

NN = argmaxj sim(z, j), j = 1, 2, . . . , T (3)

Hence, the performance on the sample Sttr of task Tz is used as a proxy to estimate the
similarity between the T z and the training tasks. This proxy has its theoretical grounding
[7]. The developed proxy is also sound from the efficiency perspective since the output
space is considerably smaller than the parameter space.

Using a part of the sample Stts = ({xttsi ,yttsi )}Mz/2
i=1 of task Tz , the second update

to the parameters θz is then performed by taking a few gradient steps (one step is next
shown for simplicity). The value of θz obtained from (1) is further updated as follows:

θz = θz − γ2∇θεz(hθz , fz) +
1

1 + e−λ
(θNN − θz), λ=εz(hθz , fz)−εNN(hθNN , fNN)

(4)

The adaptation spectrum, controlled by λ, moves along these extremes: For a data point,
if the error of task Tz , εz(hθz , fz), is considerably larger than the corresponding error of
the most similar task, εNN(hθNN , fNN), then λ is large enough to allow the task-specific
parameters θz to be adapted based on (the more accurate) θNN. In the opposite case, λ
will be close to zero and in such case the adaptation impact will be negligible.

The task-specific parameters of all the sampled tasks are used to update the shared pa-
rameters α by taking gradients on parts from the samples Stts = ({xttsi ,yttsi )}Mt

i=Mt/2+1:

α = α− γ3
∑

T ∼Pr(T )

∇α εT (hθT , fT ) (5)

The key steps of the optimisation procedure are listed in Algorithm 1.

3 Experiments

To empirically evaluate the effectiveness of the proposed ML framework, PAML, we
compare it to various SOTA ML algorithms on FSL tasks. We chiefly aim at evaluat-
ing the following aspects: 1) Classification performance on general FSL benchmarks
(Omniglot and mini-ImageNet); and 2) Classification performance on more challenging
settings in which tasks are more heterogeneous (OVD).

We conduct our experiments on the following FSL datasets: Omniglot [8], mini-
ImageNet [9] and the multi-dataset OVD [4]. We experiment on K-shot C-way tasks,
where K stands for the number of data examples per class, and C stands for the number
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Algorithm 1 Probabilistic Adaptation for Meta-Learning (PAML)

Input: A task distribution Pr(T ), from which T meta-training tasks were sampled,
each with two data samples: Sttr = ({xttri ,yttri )}Nti=1 and Stts = ({xttsi ,yttsi )}Mt

i=1.
Input: γ1, γ2, γ3: Learning rate hyperparameters.

Randomly initialise θ
while not done do

for a batch of sampled tasks do
Process one of the sampled tasks Tz ∼ Pr(T )
Draw two samples Sttr and Stts from Tz .
Evaluate∇θεz(hθz , fz) with respect to the data points of the sample Sttr .
Phase 1: Update parameters θz with gradient descent: θz = θ−γ1∇θεz(hθz , fz)
Learn the most similar task to Tz , referred to as TNN, via (2) and (3).
Evaluate εz(hθz , fz) w.r.t. the first half of Stts = ({xttsi ,yttsi )}Mz/2

i=1 .
Evaluate εNN(hθNN , fNN) w.r.t. Stts = ({xttsi ,yttsi )}Mz/2

i=1 .
Compute λ = εz(hθz , fz)− εNN(hθNN , fNN)

Evaluate∇θεz(hθz , fz) w.r.t. the first half of Stts = ({xttsi ,yttsi )}Mz/2
i=1 .

Phase 2: Adapt θz using: θz = θz − γ2∇θεz(hθz , fz) + 1
1+e−λ

(θNN − θz)
end for
Update α w.r.t. the second half of Stts : α = α− γ3

∑
T ∼Pr(T )∇α εT (hθT , fT ).

end while

of classes. Meta-training is performed via the following episodic train / test splits: two
samples are available for each task, the first sample consists of K data points from each
class. The additional sample is used both for adaptation and for updating the shared
parameters. The algorithm is tested on samples never observed during training.

Omniglot consists of 50 alphabets (tasks) with a total of 1623 handwritten characters
(each with 20 examples) [8]. To compare on common ground, we adopt the training
procedure defined in [9, 10]. mini-ImageNet consists of 60,000 coloured images
[9]. It contains 100 classes, with 600 images each. Multi-dataset OVD contains a
heterogeneous set of tasks [4], from Omniglot, VGG Flower and DTD.

3.1 General FSL Benchmarks

We compare PAML to many seminal ML works on standard FSL benchmarks. The
reported results are averages of 600 random trials. The reported standard errors are for
95% confidence intervals. Similar to previous works like [10], we focus on comparisons
with methods that do not employ residual networks nor pre-training, to concentrate on
assessing the algorithm rather than the power of a deep discriminative model.

Classification results on Omniglot and mini-ImageNet are displayed in Table 1.
PAML achieves the joint highest accuracy on 3 out of the 6 K-shot C-way settings and
singly achieves new SOTA results on 3 settings (which include all the mini-ImageNet
settings). This demonstrates the efficacy of PAML as an ML algorithm on general settings.
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Omniglot 5-way accuracy (%) 20-way accuracy (%) mIN 5-way accuracy (%)
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Nets [9] 98.1 98.9 93.8 98.5 46.6 60.0
MAML [6] 98.7 ± 0.4 99.9 ± 0.1 95.8 ± 0.3 98.9 ± 0.2 48.7 ± 1.8 63.1 ± 0.9

Prototypical Nets [11] 97.4 99.3 95.4 98.7 46.6 ± 0.8 65.8 ± 0.7
mAP-DLM [12] 98.8 99.6 95.4 98.6 50.3 ± 0.8 63.7 ± 0.7
Relation Net [13] 99.6 ± 0.2 99.8 ± 0.1 97.6 ± 0.2 99.1 ± 0.1 50.4 ± 0.8 65.3 ± 0.7

VERSA [10] 99.7 ± 0.2 99.8 ± 0.1 97.7 ± 0.3 98.8 ± 0.2 53.4 ± 1.8 67.4 ± 0.9
Bayesian TAML [4] 94.4 ± 0.6 97.7 ± 0.4 98.1 ± 0.3 99.1 ± 0.2 51.7 ± 1.6 68.3 ± 1.1
Sharp-MAML [5] 94.7 ± 0.2 95.2 ± 0.3 93.5 ± 0.2 96.6 ± 0.2 50.3 ± 0.7 65.1 ± 0.8

PAML 99.8 ± 0.1 99.9 ± 0.1 98.2 ± 0.2 99.6 ± 0.1 58.4 ± 0.5 72.4 ± 0.8

Table 1: Classification accuracy results for different FSL (K-shot C-way) settings on
Omniglot and mini-ImageNet (mIN). A student’s t-distribution is used to compute the
reported 95% confidence intervals. Bold refers to significance. PAML always achieves
SOTA results, either jointly (3 settings) or singly (3 settings).

10-way any-shot accuracy (%)
MT-NET [14] 94.7 ± 0.6

Bayesian TAML 97.7 ± 0.6
PAML 99.1 ± 0.5

Table 2: Classification results on OVD which consists of heterogeneous tasks. In these
more challenging circumstances, PAML achieves new SOTA results on OVD.

3.2 A Highly Heterogeneous Dataset

The Multi-dataset OVD [4] is a heterogeneous aggregation of three datasets: Omniglot,
VGG Flower and DTD. We compare to previous SOTA on the OVD dataset. To enable
fair comparison, we adopt an any-shot 10-way setting in this experiment, where the
number of shots randomly changes between 1 and 15 for each class.

As displayed in Table 2, PAML achieves a new SOTA result on OVD, with an average
classification accuracy improvement of 1.4%. The adaptation mechanism proposed by
PAML leads to an ML framework capable of learning in heterogeneous ML environments.

3.3 Other Experimental Details

Values of the step size parameters are: γ1=γ2=γ3=0.25 for Omniglot and OVD, and
γ1=γ2=γ3=0.01 for mini-ImageNet. The network architecture is given in Table 3.

Output size Layers
Shared part (α)

14 × 14 × 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)
7 × 7 × 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)
4 × 4 × 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)
2 × 2 × 64 conv2d (3× 3, stride 1, SAME, RELU), dropout, pool (2× 2, stride 2, SAME)

256 flatten
Task-specific part (θt)

256 2 × fully connected, ELU + linear, fully connected to µθt , ρθt
C (number of classes) fully-connected softmax

Table 3: Details of the network architecture of PAML.
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4 Conclusion

We introduced a meta-learning algorithm which combines the global meta-learning opti-
misation with a local adaptation mechanism that addresses each test task via estimating
the similarities with previously encountered tasks. We demonstrated strong empirical
performance especially on environments comprising highly heterogeneous tasks.
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