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Abstract. Graph Echo State Networks (GESN) have recently proved
effective in node classification tasks, showing particularly able to address
the issue of heterophily. While previous literature has analyzed the de-
sign of reservoirs for sequence ESN and GESN for graph-level tasks, the
factors that contribute to rich node embeddings are so far unexplored. In
this paper we analyze the impact of different reservoir designs on node
classification accuracy and on the quality of node embeddings computed
by GESN using tools from the areas of information theory and numerical
analysis. In particular, we propose an entropy measure for quantifying
information in node embeddings.

1 Introduction

Relations between entities, such as paper citations or web page networks, can
be best represented by graphs. In this representation, learning tasks such as
identifying the topic of papers within a citation network or the level of traffic in
a set of web pages joined by hyperlinks are node classification tasks. A plethora
of neural models for graphs have been proposed to solve node-level learning tasks
[1], most of them sharing an architecture structured in layers that perform local
aggregations of node features. This architectural bias favors graphs with a low
number of inter-class edges, i.e. with an high degree of homophily. Consequently,
different architectural variations have been proposed [2] to address the issue of
heterophily (i.e. low homophily) in node classification tasks, often significantly
increasing the computational cost of training.

Graph Echo State Network (GESN) [3] is an efficient model within the reser-
voir computing (RC) paradigm. In RC, input data is encoded via a randomly-
initialized reservoir, while only a linear readout requires training. GESN has
already proved effective in node classification tasks [4], in particular offering
astounding gains in accuracy on certain heterophilic graphs. While previous
literature has analyzed the design of reservoirs in Echo State Networks (ESN)
for temporal sequences [5, 6, 7] and in GESN for graph-level tasks [8], the fac-
tors that contribute to the effectiveness of GESN in node-level tasks are so far
unexplored. In this paper we analyze the impact of different reservoir designs
on the ability of GESN to provide rich node embeddings that enable good levels
of accuracy in node classification tasks. To this end, we adapt tools from the
areas of information theory and numerical analysis to assess the quality of node
embeddings computed by different GESN reservoir architectures. In particular,
we propose an information measure based on the Renyi quadratic entropy to
quantify the richness of information provided by node embeddings.
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2 Reservoir computing for node classification

The goal of a supervised node classification task is to learn a model able to infer
the node classes from a subset of nodes with known labels in a graph, relying both
on input features and network structure to make its predictions. Most common
graph neural networks (GNN) learn node embeddings for the task at hand in a
fully-trained network, structured in a hierarchy of local aggregations based on
graph connectivity to represent increasingly larger receptive fields of each node.
The training of this class of models has posed several challenges, including a bias
toward graph with high homophily [2], and the problem of node embeddings
becoming indistinguishable as the number of aggregation layers increases [9].
Graph Echo State Networks (GESN) instead follow the reservoir computing
paradigm, encoding the graph input data by a randomly initialized reservoir,
while only the task prediction layer requires training [3]. This model has already
proved surprisingly effective in solving node classification tasks, addressing the
two aforementioned issues that affect fully-trained GNNs [4].

Let G = (V, E) be a graph with node feature vectors xv ∈ RX for each node
v ∈ V. We also denote by N (v) the set of neighbors of node v, and by A the
graph adjacency matrix. In GESN, node embeddings hv ∈ RH are recursively
computed by the dynamical system

h
(k)
v = tanh

(
Win xv +

∑
v′∈N (v) Ŵh

(k−1)
v′

)
, h

(0)
v = 0, (1)

where Win ∈ RH×X and Ŵ ∈ RH×H are the input-to-reservoir and the reservoir
recurrent weights, respectively (input bias is omitted). Reservoir weights are
randomly initialized from a chosen distribution, and then rescaled to the desired
input scaling and reservoir spectral radius, without requiring any training. The
system evolves up until K iterations, sufficiently large for the node embeddings
to capture a large enough receptive field. For graph-level tasks, equation (1) is

instead iterated until the system state converges to a fixed point h
(∞)
v , which is

used as the graph embedding after a global pooling operation [3]. The existence
of such fixed point is guaranteed by the Graph Embedding Stability (GES)
property [10]. A necessary condition [11] for the GES property is ρ(Ŵ) < 1/α,
where ρ(·) denotes the spectral radius of a matrix, i.e. its largest absolute
eigenvalue, and α = ρ(A) is the graph spectral radius. While this property
is crucial for effective graph global embeddings, node classification tasks have
instead shown a stark preference for reservoirs initialized much beyond these
stability constraints [4]. To solve the node classification task, we directly apply

a linear readout to node embeddings yv = Wout h
(K)
v + bout, where the weights

Wout ∈ RC×H ,bout ∈ RC are trained by ridge regression on one-hot encodings
of target classes yv ∈ {1, ..., C} from the subset of graph nodes Vtrain ⊂ V with
known target labels {(xv, yv)}v∈Vtrain

.

3 Reservoir designs and embedding richness

We explore different designs for the recurrent weight matrix. The peculiar char-
acteristics of Ŵ ∈ RH×H , such as eigenvalue distribution and unit connectivity
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patterns, influence the dynamical properties of the system (1), and consequently
the quality of node embeddings produced by GESN. Some of the reservoir de-
signs we analyze have been already explored in the RC field for ESN applied to
temporal sequences, and include:

a) Random ensembles. The most simple method for a random reservoir ini-
tialization consists in drawing all matrix elements Ŵij independently from
the same distribution. If such distribution has zero mean and variance 1

H ,
then the matrix spectrum will be asymptotically distributed uniformly on
the unit disc [12]. In our experiments we will consider both uniform and
normal distributions (i.e. Ginibre ensembles).

b) Orthogonal reservoirs. Reservoirs with orthogonal matrices, i.e. satisfying
ŴŴ⊤ = IH , have demonstrated to improve memory capacity in ESNs [5].
The eigenvalues of these matrices are distributed uniformly on a circumfer-
ence of radius ρ(Ŵ). A simple way to sample a random orthogonal matrix
is performing QR decomposition on a random ensemble matrix [12].

c) Constrained spectra. To explore the effects on the dynamical properties of
GESN, we consider also matrices with eigenvalues constrained on the real
axis (symmetric matrices) and imaginary axis (antisymmetric), obtained re-
spectively as Ŵsymm = Ŵ + Ŵ⊤ and Ŵanti = Ŵ − Ŵ⊤.

d) Ring reservoirs. Minimum-complexity reservoirs [6] adopt a deterministic
recurrent matrix, namely a cyclic permutation matrix (itself an orthogonal
matrix). This gives a ring-shaped connectivity pattern to reservoir units,
making the system behave like a shift register [5]. This type of reservoirs has
exhibited great performances on graph-level tasks [8].

The spectra of the reservoir matrices discussed so far are presented in Fig. 1.
To measure the quality of node embeddings produced by the different reser-

voir designs, we adapt two metrics rooted in information theory and numerical
analysis previously employed for this purpose in ESNs [7]:

i) Entropy. We consider the Renyi quadratic entropy [13] to measure the
richness of information provided by node embeddings hv. The entropy is
computed via the Parzen–Rosenblatt probability density estimation of the

node embeddings distributionH2 = − log 1
|V|2

∑|V|
i=1

∑|V|
j=1 GS(hi−hj), where

GS(·) is the Gaussian kernel with covariance matrix S estimated by Silver-
man’s rule. Higher values correspond to more distinguishable node represen-
tations, potentially offering also a metric for quantifying over-smoothing [9]
not susceptible to affine transformations such as rescaling.
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Fig. 1: Spectra of different designs of reservoir recurrent matrices.
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ii) Uncoupled features. To quantify the redundancy in node embeddings we
measure the number of uncoupled features, that is the number of principal
components sufficient to capture a fraction q ∈ [0, 1] of total embedding
variability, as analogously done in [7]. Given a matrix H ∈ R|V|×H of all
node embeddings and its singular values σi(H), we consider the metric Uq =

minµ{µ :
∑µ

i=1 σi(H) ≥ q
∑H

i=1 σi(H)}; in our experiments we set q = 0.9.

4 Experiments and discussion

We evaluate the different GESN reservoir designs on seven node classification
tasks, adopting the same experimental setting of our previous work [4]. We select
the number of units H in the range [24, 212], reservoir radius ρ ∈ [0.1/α, 50/α],
input scaling in [0, 1], and readout regularization in [10−5, 102]. We set the
number of iterations of equation (1) to K = 30, which is comfortably larger
then all graph diameters. Results are reported in Tab. 1, along with a graph-
agnostic baseline (hv = tanh (Win xv)) for reference, while reservoir radii chosen
by model selection and the richness metrics of node embeddings obtained by
selected reservoirs are reported in Fig. 2. We notice three different behaviors:

Actor and Wisconsin are heterophlic tasks where the accuracy of GESN is
in line with the graph-agnostic baseline. Reservoir radii are selected within the
stability region ρ < 1/α, meaning node input features are more relevant then

Reservoir Uniform Normal Orthog. Symm. Antisymm. Ring Baseline

Actor 34.4±0.6 34.4±0.9 34.4±0.9 34.4±0.9 34.4±0.8 34.5±0.9 34.3±0.8

Wisconsin 83.8±3.9 83.4±3.5 83.5±3.4 83.3±4.1 82.9±3.4 84.0±4.0 83.8±3.8

Squirrel 73.3±1.7 73.5±1.6 73.6±1.7 53.1±1.0 53.9±1.5 38.9±1.0 34.7±1.2

Chameleon 76.7±1.6 76.7±1.4 76.9±1.5 65.8±1.3 66.5±1.8 53.7±1.8 49.0±1.5

Cora 86.1±0.9 86.0±1.3 86.2±1.0 86.2±1.5 85.5±1.2 85.6±1.4 74.1±2.3

Citeseer 74.4±2.3 74.4±2.2 74.6±2.1 74.0±2.2 74.1±4.6 74.2±2.1 71.4±2.1

Pubmed 89.2±0.4 89.1±0.4 89.2±0.3 88.9±0.3 88.8±0.4 88.8±0.5 86.7±0.4

Table 1: Node classification accuracy on low and high homophily graphs for
different reservoir matrices. Best results are highlighted in bold.
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Fig. 2: Reservoir radii, entropy and uncoupled features for reservoirs chosen by
model selection. (The reservoir units H are generally selected in [211, 212].)
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Fig. 3: Impact of reservoir radius and units on classification accuracy, entropy
and uncoupled features for Squirrel with reservoirs of 4096 units.

graph connectivity. In this regime ring reservoirs perform slightly better, but the
differences are not significant in terms of accuracy and node embedding richness.

Squirrel and Chameleon are heterophlic tasks where information needed for
correct predictions is provided exclusively by graph connectivity, as evidenced
by the large improvements over the baseline. In this case the reservoir designs
present strikingly different behaviors, with more distinguishable node embed-
dings (as evidenced by higher entropy) corresponding to better classification ac-
curacy. In that respect orthogonal matrices and random ensembles are the best
performing, while constraining reservoir spectra appear to impact negatively on
the dynamics of GESN, causing an accuracy drop of 10%–20% accompanied by
a five-fold to ten-fold reduction in entropy and uncoupled features. Ring reser-
voirs select a reservoir radius much closer to the stability bound compared to
the others, and provide a small but still significant improvement over baselines;
in this case, the high values of entropy and uncoupled features may indicate
distinguishable but misleading node embeddings, as graph topology may not be
sufficiently taken into account due to the small selected reservoir radius (see [4]).

The remaining tasks are high homophily graphs, with reservoir radii selected
beyond the stability region but not as much as the two previous tasks. Still,
GESN improves significantly over graph-agnostic baselines. Orthogonal reser-
voirs perform slightly better, while all other designs are able to provide roughly
the same level of accuracy and embedding richness.

In Fig. 3 we show an example of how richness metrics can be employed
as a guide for the selection of reservoir parameters within a certain design.
Notice indeed how the best hyper-parameter region for accuracy is the same as
for entropy and uncoupled features. As the number of uncoupled features is
considerably smaller than the number of reservoir units, it is evident that the
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potential variability of node embeddings is not completely exploited.

5 Conclusion

In this paper we have for the first time analyzed several reservoir designs for
GESN applied to node classification. Our experiments have shown that orthog-
onal matrices and random ensembles perform generally best, while constraints on
spectra or unit connectivity can cause significant degradation on tasks more de-
pendent on network rather than input features. In this case, the entropy of node
embeddings can be used to guide the design choice. The general redundancy
shown in node embeddings suggests introducing reservoir sparsity designs such
as layering, which will be explored in future works. We will also explore the ap-
plication of entropy as a scale-invariant measure for quantifying the degradation
of node representations due to over-smoothing in deep graph neural networks.
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