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Abstract. The paper deals with the analysis of the sleep patterns of
a patient with Completely Locked-In Syndrome (CLIS). The analysis was
performed using an approach initially designed to detect consciousness
in Disorders of Consciousness (DoC) and CLIS patients. The method
extracts different features based on spectral, complexity and connectivity
measures and performs soft-clustering analyses to determine the conscious-
ness state. The results showed that it was able to discriminate between
the (Non)-Rapid Eye Movement (NREM) and the Rapid Eye Movement
(REM) sleep stages. Detecting normal Slow-Wave Sleep (SWS) and REM
phases indicates better communication abilities for the patient.

1 Introduction

Completely Locked-In Syndrome (CLIS) is a condition in which a person is
conscious but is unable to perform any muscle movements such as walking and
talking [1]. Due to the rarity of the condition as well as the limited access to
patients’ data, only a handful of studies have been done to analyse such patients’
sleep patterns. In healthy subjects, there are five stages of sleep that can be
grouped into two categories: Non-Rapid Eye Movement (NREM) or deep sleep
and Rapid Eye Movement (REM) sleep [2]. The latter is usually associated with
dreaming and irregular muscle movements in addition to rapid movements of
the eyes, which makes it difficult to determine in CLIS patients [3]. REM is also
characterised by a highly active brain with brainwaves similar to those during
wakefulness, and is considered a secondary conscious state [2, 4]. Secondary
consciousness is a subjective awareness that involves perception and emotion
enhanced by thinking and the awareness of being aware [4].

In this paper, an approach originally designed to assess consciousness in
patients with disorders of consciousness (DoC) [5] and CLIS [6] is adapted and
used to detect REM sleep stages in one CLIS patient. Various features are
extracted from the EEG signal. They consist of spectral features such as the
relative powers in the θ and β bands and the spectral edge frequency (SEF),
complexity features (Poincaré plots and Lempel-Ziv complexity (LZC)), and
connectivity features consisting of the imaginary part of the coherency (iCOH)
and the weighted symbolic mutual information (wSMI).

The patient and data used for the analysis is presented in Section 2, followed
by brief description of the features used and the machine learning algorithms
used. The results are presented in Section 3, followed by a discussion before
concluding in Section 4.
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2 Tools and Methods

2.1 Data acquisition and pre-processing

The sleep data was recorded from an 80 years old female CLIS patient that was
diagnosed with ALS in 2010 [7]. The data was recorded for two consecutive
nights, however only the second night was used for the analysis. The first night
was used to familiarise the patient with the electrodes [3]. In addition to the
EEG, EMG and EOG were also recorded, although only the former were used in
this study. The EEG data consisted of recordings from 6 channels located in the
frontal, central, and occipital areas of the brain: F3, F4, C3, C4, O1 and O2.
according to the 10-20 system [8]. The electrodes were referenced to a channel
on the right mastoid, and the middle frontal electrode Fz was used as ground.
The sampling frequency is 500 Hz. The raw EEG data was filtered between 0.1
and 30 Hz using a third order Butterworth bandpass filter, and subsequently
segmented into 30-s segments as usual for sleep analysis [3].

2.2 Features computation

All analysis were performed with MATLAB R2023a. The approach used in this
study was originally designed to assess CLIS patients’ consciousness [7, 6, 5] and
adapted here for sleep analysis. Several features comprising spectral, complexity
and connectivity measures were therefore extracted from the pre-processed EEG
signals.

Brain recordings oscillate at different frequencies and provide information
about the brain states [9]. The spectral features consisted of the relative powers
(RP) [10] in the θ (4 - 8 Hz) and β (12 - 30 Hz) bands, computed using Eq. 1
for a signal x(t).

RP =

∑f2
f=f1

Sx(f)∑30
f=0 Sx(f)

, (1)

where Sx is the power spectral density of the signal x(t), f1 (resp. f2) is the
lower (resp. upper) limit of the frequency band of interest.

In addition, the frequency below which 95% of the EEG power are located,
called Spectral Edge Frequency (SEF95) [11], was also calculated using Eq. 2.

SEF95∑
f=0

Sx(f) = 0.95

Fs/2∑
f=0

Sx(f). (2)

where Fs is the sampling frequency.
The randomness of a signal are determined by its complexity. To that in-

tent, Poincaré plots determine it geometrically by plotting them against their
delayed with a lag τ version [12]. The signal complexity is then determined by
the Ellipsoid Radius Ratio (ERR), which is the ratio SD1/SD2 (Eq. 3) [13].
SD2 and SD1 are respectively the standard deviation of the points along and
perpendicular to the line of identity on the Poincaré plots.
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ERR =
SD1

SD2
=

√
2
2 SD(x(t)− x(t+ τ))√

2SD(x(t))2 − 1
2SD(x(t)− x(t+ τ))2

(3)

On the other hand, LZC uses a more analytical approach that employs a
symbolic representation of the signal to determine its complexity [14]. Both
complexity measures are calculated using Eq. 4 and 5, respectively.

xa(t) = x(t) + ixh(t) (4)

S(t) =

{
0, if abs (xh(t)) ≤ mean (abs (xh(t)))

1, otherwise
(5)

where xa(t) is the analytic signal related to x(t), and xh(t) is the Hilbert trans-
form of x(t) [15].

Brain connectivity provides information on the connections between different
brain regions. Linear relationships between the different pairs of channels were
determined using iCOH [16] using Eq. 6. Linear and non-linear relations between
them were computed using the wSMI [17, 18] in Eq. 7.

iCOHxy(f) = =

(
Sxy (f)√

Sxx (f) · Syy (f)

)
(6)

where Sxy(f) is the cross power spectral density of the signals x(t) and y(t).

wSMI(x, y) =
1

log(k!)

∑
x̂∈X̂

∑
ŷ∈Ŷ

w(x̂, ŷ)p(x̂, ŷ) log

(
p(x̂, ŷ)

p(x̂)p(ŷ)

)
(7)

where x̂ and ŷ are discrete symbols obtained by organising the signals x(t) and
y(t) according to trends in amplitudes of k time samples separated by a temporal
separation of elements τ .

2.3 Clustering analysis

The features were computed for all channels for the spectral and complexity
measures, for all pairs of channels for the connectivity measures, for each 30-sec
segment, and subsequently normalised. This generates a feature matrix of size
1487× 7 used as input to two clustering analysis methods. Considering that the
goal is to differentiate between NREM and REM sleep, the number of clusters
N is set to 2. Soft-clustering approach was used so that each data point belongs
to both clusters with different degrees of memberships, which sum is equal to 1.
A value of 0 means that the data point is not representative of the cluster at all.
In the context of this study, this would then mean that a value of 1 represent
the REM sleep stage while all the values between 0 and 1 represent the deepness
of sleep. The higher the values, the lightest the sleep. Two clustering analyses
were used.
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On one hand, Fuzzy c-means (FCM) is similar to the K-means algorithm.
Soft-clustering is obtained by introducing a fuzziness parameter m = 2 when
computing the objective function Jm [19]. Likewise, the goal is to minimise Jm
in Eq. 8

Jm =
D∑
i=1

N∑
j=1

µm
ij‖xi − cj‖2, (8)

in which, D: number of data points, N : number of clusters, µm
ij : degree of

membership of xi to jth cluster, ci: j
th cluster centre.

On the other hand, Gaussian mixture models (GMM) attempts to determine
the statistical model of the data using a Gaussian mixture distribution [20]. The
data is assumed to arise from a finite mixture of probability density functions:

f (xi,Θ) =
K∑

g=1

πgΦ (xi/µg,Σg) (9)

where K: number of clusters, πg > 0, (g = 1, ...,K) and
∑K

g=1 πg = 1: mixing
proportions, Φ (xi/µg,Σg) is the underlying component-specific density func-
tion with parameters µg, σg, g = 1, ...,K. The parameters in Φ are estimated
by the maximum likelihood optimisation, more precisely by using the iterative
Expectation-Maximization (EM) algorithm [21]. The model in Eq. 9 generates
ellipsoidal clusters centred at the mean vector µg, and σg controls the other
geometrical properties of each cluster.

The results obtained from both clustering analyses are then averaged using
Eq. 10 to obtain a final unique value [22] that will determine the sleep stage of
the patient.

Pavg(c,m1m2) = avg(P (c,m1), P (c,m2)) (10)

in which P (c,m1) (resp. P (c,m2)) is the probability that the observation i is a
member of cluster c in partition m1 (resp. m2).

3 Results

In this paper, an approach initially meant to assess consciousness levels in DoC
and CLIS patients was slightly modified to determine sleep stages (NREM vs
REM) in one female CLIS patient. Different features were extracted from the
EEG signals before analysing them using soft-clustering approaches. Fig. 1 il-
lustrates the obtained result. The general pattern of the plot resembles that
of a healthy subject, with high predicted values before 00:00 (median: 0.8895)
and after 06:00 (median: 0.6877) suggesting wakefulness. Intermittent lower and
higher values suggesting deep sleep (SWS) alternating with light sleep (wake-
fulness (REM)) were observed between 00:00 and 06:00 (min: 0.0088, median:
0.1263, max: 0.9843).
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Fig. 1: Sleep stages of the CLIS patient. 0: deep sleep, 1: wakefulness.

4 Discussion and Conclusion

In healthy subjects, Slow-Wave Sleep (SWS) occurs during the deepest sleep
stage (NREM) [2]. What was observed between 00:00 and 06:00 in Fig. 1 could
consequently be interpreted as REM sleep alternating with SWS. This is con-
firmed by the analysis performed on the same patient in [3], which indicated that
slow waves appeared from 02:00 and were followed by periods during which in-
active wakefulness (REM) were observed. These observations imply a seemingly
functional circadian system. When impaired, the latter could limit the patients’
capabilities to communicate [1]. This patient was able to successfully use a
functional Near-Infrared Spectroscopy (fNIRS)-based brain-computer interface
(BCI) to communicate between 2014 and 2015. Moreover, when estimating her
consciousness levels during some experiments using her EEG recordings, it was
determined that the values were sufficient to initiate communication [7].

The results obtained using an adapted version of the approach to detect
consciousness in patients with DoC and CLIS suggest its usability to also eval-
uate sleep stages in CLIS patients. This patient displayed a relatively normal
sleep-wake cycle, which in turn indicates increased communication capabilities.
Being able to communicate have been shown to increase CLIS patients’ qual-
ity of life, thus contributing positively to the patient’s mental well-being. One
crucial shortcoming is however the lack of more data to validate these results.
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