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Abstract. In this work, we propose an original method for aggregating
multiple clustering coming from different sources of information. Each
partition is encoded by a co-membership matrix between observations.
Our approach uses a mixture of Stochastic Block Models (SBM) to group
co-membership matrices with similar information into components and
to partition observations into different clusters, taking into account their
specificities within the components. The parameters are estimated using
a Variational Bayesian EM algorithm. The Bayesian framework allows for
selecting an optimal numbers of clusters and components.

1 Multiview data and late fusion clustering

Most everyday learning situations are achieved by integrating different sources
of information, such as vision, touch and hearing. A source of information in a
given format will be referred to as a modality or a view. Multimodal or multiview
machine learning aims to learn models from multiple views (e.g. text, sound,
image, etc.) in order to represent, translate, align, fusion, or co-learn [1, 2].

The corresponding learning models vary based on their fusion strategy. The
three main methods are early, intermediate, and late fusion of views. Late
fusion is well suited to clustering since each view is often associated to dedi-
cated efficient clustering algorithms. In this work, we are interested to build
a coordinated representation of the resulting partitions through a probabilistic
model. This coordinated representation should provide details about consensus
and complementary information existing between the different views both at a
global and local level [2].

Several methods have been developed to discover relationships across multiple
clustering results. Consensus clustering is a family of methods which are based
on the construction of a consensus matrix that represents the degree of agreement
among different clustering algorithms, as in [3]. Tensor-based meta-clustering
utilizes multilinear algebra decomposition techniques to identify patterns and
relationships across each layer of this tensor ; in case of meta-clustering, all layers
are often adjacency matrices, as in [4]. Finally, Mixture Multilayer Stochastic
Block Models expands the traditional SBM by considering multilayer networks,
allowing the layers to come from a mixture model, as in [5].
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We propose a Bayesian multilayer SBM approach, MIxture of Multiview Inte-
grator SBM (mimi-SBM), that takes into account several sources of information,
and where the membership clustering is traversing, as illustrated in Figure 1.

Fig. 1: Illustration of mimi-SBM. Left: Four adjacency matrices coming from
four different views which can be organized into two components. Right: identi-
fication of the two components from the views (local and complementary infor-
mation) and clustering of the observations (global and consensus information).

The next section introduces notations and model, followed by synthetic ex-
periments for comparing and evaluating the performances of the proposed ap-
proach. We conclude with a discussion section.

2 A mixture of stochastic block models

Performing clustering with mixture models amounts to an inference problem
since the cluster labels are the model latent variables. In our context, we consider
two sets of latent variables respectively corresponding to the structure of the
observations and the structure of the views. We assume that the views are
generated by a mixture model, in which each component is itself a stochastic
block model. This allows us to capture the complex dependencies between the
views, and to accurately model the underlying structure of the data.

Let A ∈ {0, 1}N×N×V be a tensor where N is the number of vertices (obser-
vations), and V the number of views. A is defined as a natural extension of an
adjacency matrix for multiple graphs (G1, · · · ,GV ) with corresponding vertices

Aijv =

{
1, if individuals i, j are linked in Gv,

0, otherwise.

The nodes and their corresponding order are the same throughout all views.
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Let denote W ∈ {0, 1}V×Q, the indicator membership matrix for the views,
and Z ∈ {0, 1}N×K , the indicator membership matrix of observations, where K
is the number of view traversing clusters and Q the number of components of
the view mixture. Each line of matrix W follows a multinomial distribution,
Wv ∼ M(1,ρ = (ρ1, . . . , ρQ)).

Although we use multiple views with their own cluster structure, we assume
a traversing structure for the latent variables across all views. By leveraging
all available sources of information, we aim to achieve a more comprehensive
understanding of the data and obtain community structures that are consistent
across all views. The individuals are thus assumed to come from a number K
of sub-populations. Each latent class vector follows a multinomial distribution,
Zi ∼ M(1,π = (π1, . . . , πK)).

Eventually, the probability of an edge between individuals i and j on the
view v, given the latent variables, is

P(A | Z,W,Θ) =
N∏

i=1,
i<j

K∏
k,l=1

V∏
v=1

Q∏
s=1

(
α
Aijv

kls (1− αkls)
1−Aijv

)ZikZjlWvs

.

The proposed Bayesian model considers the following classical distributions
in the context of SBM [6]:

P(π | β0 = (β0
1 , . . . , β

0
K)) = Dir(π;β0) ,

P(ρ | θ0 = (θ01, . . . , θ
0
Q)) = Dir(ρ;θ0) ,

where Dir(·) define the Dirichlet distribution which is the conjugate prior for
the multinomial distribution. Concerning the parameters of the SBMs, we use
independent Beta priors to model the connectivity matrices

P(α | η0 = (η0kls), ξ
0 = (ξ0kls)) =

∏
k,k<l

∏
s

Beta(αkls; η
0
kls, ξ

0
kls) .

Jeffrey’s prior seeks to establish a non-biased prior distribution for a param-
eter, thus reducing subjectivity in analysis [7].

In case of a Dirichlet distribution, we have β0
k = θ0s = 1/2 , ∀k, s and for Beta

distribution we can choose η0kls = ξ0kls = 1/2 , ∀k, l, s too [6].
The marginal likelihood of observed data is defined as

P (A) =
∑
Z

∑
W

∫ ∫ ∫
P (A,Z,W,α,π,ρ) dα dπ dρ .

Computing the marginal likelihood is a challenging problem in SBM. Inte-
grals in the formula for the marginal likelihood are difficult or impossible to
compute analytically, and sums over Z and W are often intractable as soon as
the number of parameters or observations is large.
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Given a variational distribution q(·) over {Z,W,α,π,ρ}, we can decom-
pose the marginal log-likelihood into Evidence Lower BOund (ELBO) and KL-
divergence between variational and posterior distribution:

log (P(A)) = L (q(·)) + KL (q(·)∥P(· | A)) , (1)

A convenient variational distribution, often from the exponential family, is
chosen. Its parameters are optimized to minimize KL-divergence.

Using the mean-field approximation, we assume that q(·) can be factorised
as

q(Z,W,α,π,ρ) =
N∏
i=1

q(Zi)
V∏

v=1

q(Wv)

Q∏
s=1

K∏
k,k≤l

q(αkls) q(π) q(ρ) . (2)

According to (1) and (2), given a well defined distribution q(·), the ELBO is
L (q(·)) = lBeta(β) − lBeta(β0) + lBeta(θ) − lBeta(θ0) +

K∑
k≤l

Q∑
s=1

log

(
Γ
(
η0kls + ξ0kls

)
Γ (ηkls) Γ (ξkls)

Γ (ηkls + ξkls) Γ (η0kls) Γ (ξ0kls)

)
−

N∑
i

K∑
k

τik log(τik) −
V∑
v

Q∑
s

νvs log(νvs) ,

where Γ(·) is the Gamma function, lBeta(·) the log multinomial Beta function,
and the estimated probabilities τik and νvs are respectively related to the mem-
berships of observation i to cluster k and view v to component s. This function
is also called ILvb and can be used for model selection.

3 Simulation study

The Adjusted Rand Index (ARI) measures partition similarity in upcoming sim-
ulation. It quantifies agreement between model predictions and true partition,
reflecting paired observations’ grouping or separation. ARI near 1 signifies higher
partition similarity.

For model comparison, artificial data is generated (adjacent matrices)from
source mixtures and individual clustering. Various parameter values test dif-
ferent scenarios: N (observations), V (views), K (clusters), and Q (sources)
are varied. For the other parameters, they have been set as follows : π,ρ cor-
responding to an equiprobability of belonging to a cluster or component, thus
{πk}Kk=1 = 1/K and {ρs}Qs=1 = 1/Q .

Also, α is a tensor composed of matrices. To have a simulation model that
closely resembles a co-membership matrix, the matrices have 0.99 on the diag-
onal 0.01 and elsewhere. This setting strongly encourages links between indi-
viduals within the same cluster while allowing for some noise. The code for the
simulations is available on GitHub in the repository mimiSBM. 1

1https://github.com/Kdesantiago/mimiSBM.

154

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.

https://github.com/Kdesantiago/mimiSBM


(a) N = 200, V = 15,K = 5, Q = 3 (b) N = 200, V = 50,K = 10, Q = 10

Fig. 2: Boxplot of ARI measure between true individual partition and output
partition of M3C [3], mimi-SBM and TWIST [4] models.

In Figure 2 it has been observed that mini-SBM achieved the best cluster-
ing results for each considered experimental configuration. Indeed, mini-SBM
recorded the highest ARI score for all data sizes, number of clusters and sources.
M3C model improved with increased factors, while TWIST struggled with com-
plex clustering, hinting at its limited suitability for difficult problems.

(a) N = 50, V = 15,K = 5, Q = 3 (b) N = 200, V = 15,K = 5, Q = 3

Fig. 3: Boxplot of ARI measure between true view clustering and output clus-
tering of Graphclust [5], mimi-SBM and TWIST [4] models.

The second problem is the clustering of views. In Figure 3, Limited obser-
vations challenge source identification for all models. Graphclust stands out
significantly, with non-overlapping boxplots compared to the other two models.
As observations increase in the second simulation, model performances improve.
Graphclust identifies true sources less than mimi-SBM and TWIST. TWIST
mostly identifies true members but with occasional errors, seen as boxplot out-
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liers.
The mimi-SBM model has demonstrated a clear ability in recovering the

stratification of individuals and the components of the mixture of views. How-
ever, as with any statistical model, its performance, particularly on the mixture
of views, improves with larger numbers of observations. Given the importance
of accurately modeling mixture components in a variety of applications, these
results highlight the potential utility of mimi-SBM in a range of contexts.

4 Conclusive remarks

In our simulation setting, the proposed Bayesian mixture multiview SBM ap-
proach has been shown to outperform methods based on tensor decomposition,
hierarchical model-based SBM, and reference model in consensus clustering.

An interesting follow-up would be to extend this approach to the context
of deep learning, specifically in the context of variational auto-encoders using
the Bayesian formulation. Additionally, further research is needed to develop
theoretical proofs regarding the convergence of parameters for the component-
connection probability tensor model and explore the identifiability of this model.
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