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Abstract. Feature selection is one of the most relevant preprocessing and
analysis techniques in machine learning. It can dramatically increase the
performance of learning algorithms and also provide relevant information
on the data. In online and stream learning concept drift, i.e., the change of
the underlying distribution over time, can cause tremendous problems for
learning models and data analysis. While there do exist feature selection
methods for online learning, to the best of our knowledge there do not exist
methods to perform feature selection for drift detection, i.e., to increase
the performance of drift detectors and to analyze the drift itself. In this
work, we study feature selection for concept drift detection and provide
a formal derivation and semantic interpretation thereof. We empirically
show the relevance of our considerations on several benchmarks.

1 Introduction

Data from the real world such as social media entries or measurements of IoT
devices are subject to continuous changes known as concept drift [1, 2]. Such
can be caused by seasonal changes, changed demands, aging of sensors, etc.
Since drift might induce severe problems in machine learning models and render
performed data analysis useless, it is important to detect and understand the
nature and the characteristics of the ongoing drift [3, 4, 5].

Feature selection and feature relevance analysis [6, 7, 8] are relevant tech-
niques for data preprocessing and analysis in machine learning as well as data
science. If used when training machine learning models, one can dramatically
increase generalization capabilities while reducing training time and the amount
of training-data needed. Factors that are of particular relevance in online and
stream learning where only limited resources by means of data and computation-
time are available [2]. On the other hand, such techniques also provide relevant
information about the problem and dataset as well the global model structure.
We thus gain relevant insights into the ongoing drift. While there do exist works
on explaining concept drift [5, 3, 9] and feature selection for stream learning
in the presence of drift [10, 11], only a few works consider both problems at
once [9]. Furthermore, performing feature selection for drift detection, e.g., to
increase performance, is a relevant, non-trivial problem. Notice that drift de-
tection does not admit a loss function so well-known feature selection methods
cannot be applied directly.

In this work, we study feature selection for concept drift detection using
a filter-method-like approach. We provide a semantic interpretation of the ob-
tained feature sets. This allows us to derive important information on and about
the underlying structure of the drift and potential downstream tasks. This pa-
per is organized as follows: In the first part (Section 2) we recall the definition
of concept drift and provide an overview of the related work. We then derive
a notion of feature relevance for concept drift detection which we show to be
natural, analyze its properties, and discuss its connection to concept drift as
a whole as well as feature relevance theory (Section 3). We then empirically
evaluate the resulting algorithm on several benchmarks (Section 4).
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2 Problem Setup

In this section, we will briefly recall the main definitions of concept drift and
provide a short overview of related work on feature selection in the presence of
drift as well as drift explanations.

2.1 Concept Drift and Setup

In the following, we will consider a dataspace X composed of multiple features
f ∈ F, i.e., X =

∏
f∈F Xf for an index set F. For a datapoint X ∈ X we denote

the feature f ∈ F by Xf and for a subset F ⊆ F we will write XF = (Xf )f∈F .
To model concept drift we consider a family of probability measures Dt on

X indexed over a time-domain T , in place of a time-invariant data distribution
D as considered in classical machine learning. Hence, Dt can change over time
and concept drift takes place if Dt ̸= Ds for some s, t ∈ T [2]. This idea
can be generalized to the statistical dependence of random variables X and T
representing data and time, respectively [12]. In the supervised case the notion
of real drift, i.e., drift of the conditional distribution Dt(Y | X) ̸= Ds(Y | X),
becomes relevant [2]. As shown in [13] it is equivalent to conditional dependence
of label Y and time T given X. Here, we will make use of this terminology
a bit more loosely and apply it to any feature, not just label given data only.
Furthermore, by abuse of notation we will denote the (conditional) marginal
distribution on the features F, F ′ ⊆ F by Dt(XF ) (and Dt(XF | XF ′)).

2.2 Related Work

Quite a number of approaches aim for the detection and quantification of drift,
its localization in space, visualization, or feature-wise representation [5, 8, 9].
Also, feature selection and feature relevance analysis in the presence of drift
has been heavily studied in the past, but usually through the lens of a learning
model only [10, 11, 4] which is only loosely connected to drift if considered
from an analyst’s point of view [13]. To the best of our knowledge, there are
no works that deal with the application of feature selection to drift detection
algorithms directly. Recently, [5, 8] introduced a new class of drift explanations,
called model-based explanations, that use learning models as surrogates in order
to compute explanations and thus allow the application of feature relevance
analysis to drift directly. As pointed out in [8] the relation between drift and
feature importance measures is not well understood yet.

3 Drifting Features

We will now derive and analyze a notion of features that are affected by drift
which we will refer to as drifting features. As already stated above these are
not only relevant for learning with drift [11] but also drift detection [14] and
analysis [3]. The näıve way to define drifting features would be to apply the
common definition of drift feature-wise. However, this leads to counterintuitive
statements if the drift only affects correlations, so that there is drift but no
drifting feature. Thus, we have to take the joint distributions into account.
Unfortunately, once the joint distribution has drift, adding another feature does
not change that. Thus, we must quantify the drift. Inspired by the common use

54

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



of similar distances in drift detectors we consider the drift intensity :

IDt(F ) =

∫
DKL

(
Dt(XF )

∥∥∥∥∫ Dt(XF )dPT (t)

)
dPT (t), (1)

which can be interpreted as “how well does the mean distribution
∫
Dt(XF )dPT (t)

approximate the time-point specific distribution Dt(XF ) on average?”. A drift-
ing feature is one that “contributes” to the drift of a suitable marginal distribu-
tion and thus makes it easier to detect the drift if included:

Definition 1. Let Dt be a drift process, i.e., a Markov kernel from T to X [12],
with features F. We say thatXf with f ∈ F is a drifting feature iff it can increase
the drift intensity, i.e., if there exists F ⊆ F such that IDt

(F ) < IDt
(F ∪ {f}).

Some obvious questions are whether the notion of drifting feature depends on
the notion of drift intensity specifically, e.g., whether replacing Kullback-Leibler
divergence by another divergence measure will result in different drifting features
or not, how drift and drifting features are related, and how a decrease in drift
intensity can be interpreted. Those are answered by the following theorem:

Theorem 1. Let Dt be a drift process and F ′ ⊆ F ⊆ F feature sets. It holds
(i) IDt is non-negative, i.e., IDt(F ) ≥ 0, (ii) monotonously increasing, i.e.,
IDt

(F ′) ≤ IDt
(F ), and (iii) strict inequality holds if and only if the additional

features have real drift given the old ones, i.e., if Dt(XF\F ′ | XF ′) has real drift.
In particular, Dt has drift if and only if there exists at least one drifting feature
and Xf is a drifting feature if and only if there exists a set of features F such
that Dt(Xf | XF ) has real drift. The notion depends on the drift process, only.

Sketch of proof. Notice that IDt(F ) = I(XF ;T ) where the right-hand side is the
mutual information. Due to space restrictions details are left to the reader.

Notice that many discrepancy measures have similar properties, for instance,
[3] showed monotony for the total variation norm for discrete data. Furthermore,
many important divergence measures used in drift detection are not increased
or at all affected by adding non-drifting features so they can be excluded from
drift detection. This includes MMD for various kernels, total variance norm,
Wasserstein metric, the feature-wise Kolmogorov-Smirnov statistic, and several
classification-based approaches. Hence, the notion of drifting features captures
which features are relevant for drift detection.

To determine the drifting features, we make use of the close relation to feature
relevance theory [15, 16] when described in terms of conditional independence
which is similar to drifting features.

Definition 2. A feature Xf is relevant to Y iff Xf and Y are not independent
given some set of features R, i.e., Y⊥̸⊥Xf | XR, otherwise it is called irrelevant.

From this definition, Theorem 1, and [13] it becomes apparent that:

Corollary 1. A feature Xf is drifting if and only if Xf is relevant to T .

Thus, a large variety of algorithms for determining drifting features becomes
available as finding drifting features can be done by performing feature selection
for X 7→ T . However, one has to be careful as most approaches are designed
for classification tasks but T is usually a continuous random variable, i.e., a

55

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



0 50 100 150 200 250
#Noise Features

0.5

0.6

0.7

0.8

0.9

1.0

RO
C-

AU
C

All
 
 

ET-B
ET-FI
ET-PFI

FRP
GRP
PCA

(a) ROC-AUC of MMD (5 features selected)

10 100
#Noise Features

0.2

0.3

0.4

0.6

1.0

Pr
ec

isi
on

ET-B (1)
ET-B (2)
ET-B (3)
ET-B (5)
ET-B (8)

(b) Precision of selection

Fig. 1: Performance over all datasets (with ≥ 8 features in (b)) and runs vs.
number of noise features for some feature selection methods and baselines.

regression task. This can be resolved using appropriate preprocessing [7]. This
shows the close connection to the ideas of [8]. Furthermore, it can be shown
that a feature can only become (ir-)relevant to a prediction task over time if
it is a drifting feature. This provides theoretical justification for online feature
selection methods such as [11] and shows the relevance of our considerations to
several other downstream tasks.

4 Experiments

We evaluate our ideas empirically by applying the proposed feature selection
technique to data-streams that are enriched with additional non-drifting, noise
features. We perform two evaluations using the same experimental setup: (1) the
performance increase of drift detection and (2) the capability to distinguish
drifting and noise features.

Setup: For feature relevance we use Feature Importance (FI), Permuta-
tion Feature Importance (PFI), and Boruta [6] (B) based on Random Forests
(RF) and Extra Trees (ET) both with Fourier preprocessing of degree 5 [7].
We compare against the baselines of using all features (All), Full Random Pro-
jections [14] (FRP), Gaussian Random Projections [17] (GRP), and PCA [17]
(PCA). We select a predefined number of features, considering different numbers.
We use the following datasets AGRAWAL, LED, MIXED, RandomRBF, Ran-
domTree, SEA, Sine, STAGGER [18], “Electricity market prices” [19], “Forest
Covertype” [20], and “Nebraska Weather” [21]. We consider the label as a fea-
ture and samples of 250 datapoints with either one abrupt drift in the middle or
without any drift, following the setup in [14]. We remove the linear feature cor-
relation and standardize mean and variance. We add different numbers (0-250)
of noise features using permuted versions of the original features, comparable to
Boruta’s shadow features [6]. We run each setup 1.000 times. A summary is
given in Fig. 1.

(1) Drift Detection: We use the kernel-two-sample test [22, 17] (MMD;
gauss-kernel) and the feature-wise Kolmogorov-Smirnov test [23] (KS) to detect
drifts. We use the ROC-AUC on the obtained p-values to evaluate detection
performance. To allow better reproducibility we simplify the evaluation by as-
suming to know the correct candidate time-point, so the problem reduces to
a two-sample test [14]. The time-point is not available to the feature selec-
tion. Regarding detection performance, we find that for All both drift detectors
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Table 1: Results for realworld datasets, noise features, and drift detectors. Table
shows ROC-AUC for ET-FI with 1/5/10 selected features and All baseline.

KS MMD

ET-FI All ET-FI All

DS #NF 1 5 10 1 5 10

F
o
re
st

0 0.95±0.04 0.99±0.01 1.00±0.00 0.99±0.01 0.92±0.05 0.93±0.04 0.93±0.05 0.92±0.04
25 0.92±0.06 0.98±0.02 0.99±0.01 0.99±0.01 0.90±0.06 0.88±0.07 0.88±0.05 0.89±0.06
80 0.93±0.05 0.98±0.02 0.99±0.01 0.99±0.02 0.92±0.05 0.89±0.06 0.88±0.06 0.88±0.06
250 0.94±0.04 0.99±0.02 0.99±0.02 0.97±0.03 0.93±0.05 0.90±0.06 0.89±0.05 0.85±0.07

W
ea

th
er 0 0.94±0.04 0.96±0.03 0.96±0.03 0.96±0.03 0.91±0.05 0.92±0.06 0.68±0.12 0.68±0.09

25 0.90±0.05 0.96±0.03 0.96±0.03 0.94±0.04 0.88±0.07 0.78±0.08 0.70±0.08 0.58±0.08
80 0.90±0.05 0.95±0.04 0.95±0.04 0.92±0.06 0.89±0.06 0.79±0.07 0.72±0.08 0.55±0.10
250 0.89±0.06 0.95±0.04 0.96±0.03 0.91±0.05 0.89±0.05 0.80±0.08 0.73±0.09 0.52±0.10

are negatively affected by the number of noise features, but MMD significantly
more (see Table 1). This is to be expected as KS operates feature-wise. We
observe similar results for FRP, GRP, and PCA which are outperformed by All.
If feature selection is used, we do not observe a significant decline in detection
performance (see Fig. 1a). Usually, FI and B outperform PFI, the comparison
of FI and B is inconclusive. For MMD All is outperformed by all feature se-
lect methods and those with fewer selected features perform better. For KS All
outperforms all PFI-based approaches but is outperformed by B and FI if an
adequate number of features is used. PFI and FI with more selected features
perform better, regarding B the results are not clear. The difference between
RF and ET seems to be negligible in all cases.

(2) Feature Relevance: We compare the set of affected and selected features,
focusing on precision rather than the F1-score to evaluate feature selection as the
number of selected features is predefined and recall favors larger selections. As we
only increase the negatives, we can directly compare the obtained scores. Here,
B outperforms FI which outperforms PFI and ET outperforms RF. Considering
the number of noise dimensions we observe a superlinear relationship in the log-
log plot with a negative slope (see Fig. 1b). For larger selections performance
decreases faster. All strategies perform significantly better than random chance.

5 Conclusion and Further Work

In this work, we adapted the notion of feature relevance and feature selection
for drift detection and showed the relevance of this idea to the quality of drift
detection as well as the understanding and explanation of concept drift. We
provided a formal definition of the notion of drifting features, showed its con-
nection to feature relevance theory, answering the question of [8] on the nature of
the observed effects, and provided an efficient algorithmic solution to the prob-
lem. The technology provides convincing results for downstream tasks, while the
specificity of the detection of features is yet not well understood and leaves room
for improvements. Also, the effects of different change points, gradual drift, and
specific properties of the dataset like the number and correlation of features
are subject to further research. Furthermore, in feature relevance theory there
is a further distinction between strong and weak relevant features which can
be transferred to the drift setup but have not been considered so far. Further
analysis in this direction seems to be interesting for future work.

57

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



References

[1] A. Bifet and J. Gama. Iot data stream analytics. Ann. des Télécomm., 75(9-10), 2020.
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