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Abstract. The concept of Kernel Affine Hull Machine (KAHM) was re-
cently introduced for representing data via learning in Reproducing Kernel
Hilbert Spaces. KAHM defines a bounded geometric body in data space
such that a distance measure from the geometric body can be used to ag-
gregate local KAHM-based models to build a global model. This study
leverages KAHMs for secure federated learning where data is protected
from an aggressive aggregator by fully homomorphic encryption. An ac-
curate and computationally efficient federated learning architecture, that
combines local KAHMs-based classifiers in a robust and flexible manner
such that the global model can be homomorphically evaluated in an effi-
cient manner, is provided.

1 Introduction

Privacy-preserving distributed machine learning is increasingly gaining atten-
tion. As a result, there has been a recent surge in the interest on advanced
privacy-preserving methods such as Fully Homomorphic Encryption (FHE) and
differential privacy. A practical secure privacy-preserving distributed machine
(deep) learning requires addressing some of the fundamental issues [1]. In par-
ticularly, the following three issues are identified: 1) Despite recent advances in
FHE schemes, machine learning with fully homomorphic encrypted data remains
impractical due to the large computational overhead. 2) The major limitation
of the differentially private machine learning is that a sufficiently low value of
privacy-loss bound results in a considerable loss of accuracy and it is not clear
how to practically choose the value of privacy-loss bound. 3) The scalable and
fast machine (deep) learning demands development of computationally efficient
algorithms for a) training models outside the realm of slow gradient-based learn-
ing algorithms, and b) automatically determining the model size matching the
complexity of the problem.

To address the issue arising from the large computational cost associated with
fully homomorphic encrypted data, a membership-mappings based approach to
secure distributed deep learning was suggested [2]. This approach relies on defin-
ing fuzzy attributes such that fuzzy attributes allow combining local models by
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means of a rule-based fuzzy system and the global model can be homomorphi-
cally evaluated efficiently. Differential privacy is another approach that preserves
the privacy of the data via adding random noise to ensure that an adversary
can not infer any single data instance by observing model parameters or model
outputs. The amount of noise depends upon the value of privacy-loss bound
and an obvious effect of adding noise is the loss in accuracy. To address the
accuracy-loss issue of differential privacy, efforts have been made to optimize
the privacy-accuracy tradeoff. The studies [3, 4] derive the probability density
function of noise that minimizes the expected noise magnitude together with
achieving differential privacy. The optimal differentially private noise adding
mechanism has been applied to distributed machine learning in [4, 5], where
fuzzy sets and rules were used to aggregate the local privacy-preserving deep
models for building the global model.

There are three main issues pertaining to deep neural networks: determina-
tion of the optimal model structure, gradient-based iterative nature of learning
algorithms, and requirement of large training data. These issues motivate an
alternative kernel-based nonparametric approach. For example, fuzzy theoretic
kernel based autoencoders have been introduced [6, 7, 8, 9, 10, 11, 2, 12, 4, 5],
such that solutions for the learning of models are derived analytically using vari-
ational optimization technique. More recently, [13] introduced the concept of
Kernel Affine Hull Machine (KAHM) such that KAHM defines a bounded re-
gion in the affine hull of data samples having learned the representation of data
samples in reproducing kernel Hilbert spaces via solving a kernel regularized
least squares problem. KAHM based federated learning has been previously
considered in [13], however, under differential privacy. Although [13] suggests
the smoothing of data for mitigating the accuracy-loss issue of the differential
privacy, a low value of privacy-loss bound still leads to a drop in the accuracy.
To address this limitation, this study extends the KAHM based federated learn-
ing approach to FHE setting so that privacy is protected without an accuracy
loss. Moreover, the federated learning method remains computationally efficient
since the method requires only the locally computed distance measures which
are encrypted and can be efficiently processed for the homomorphic evaluation
of the global model.

2 KAHM Based Secure Federated Learning

We consider a scenario of federated learning with Q different parties such that
q−th party owns a dataset, {Y q

1
, · · · , Y q

C}, that can be partitioned into C differ-
ent classes (here Y q

c refers to the c−th class labelled points in R
p owned by q−th

party). Following [13], our approach is of combining together the local KAHM
based classifiers using the distance functions induced by local KAHMs to build
a global classifier. The global classifier assigns a label to an input y ∈ R

p as

GC(y) = arg min
c∈{1,2,··· ,C}

(
min

q∈{1,2,··· ,Q}

ΓW
Y

q
c
(y)

)
(1)
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Fig. 1: Secure federated learning based on KAHM and FHE.

where ΓW
Y

q
c

is the distance function induced by the KAHM (refer to [13] for

details). Under the assumption that the minimum is reached by a unique party,
the global classifier assigns to an arbitrary point y the label of the class which has
the minimum distance between y and y’s image onto the affine hull of samples
of that class. An important feature of the global classifier evaluation using
(1) is that the evaluation doesn’t require individual KAHMs (that are owned by
different parties) but only the distance measures. This allows to design a KAHM
based secure federated learning method using TFHE scheme [14, 15]. For this,
the distance measure is rescaled to lie in [0, 1] via defining

µ̄q,c(y) := 1− exp

(
− 1

2p

∣∣∣ΓW
Y

q
c
(y)

∣∣∣
2
)
. (2)

Define cl q as the class-label predicted by the q−th local classifier, i.e.,

cl q = arg min
c∈{1,2,··· ,C}

µ̄q,c(y). (3)

Let δ(m1,m2) be the Kronecker delta function of m1,m2 ∈ [0, 1], i.e.,

δ(m1,m2) =

{
1 if m1 = m2,

0 if m1 6= m2.
(4)

Now, (1) can be alternatively expressed as

GC(y) =

Q∑

q=1

cl q δ (µ̄q,cl q(y), µ̄q∗,cl q∗(y)) , where (5)

q∗ = arg min
q∈{1,2,··· ,Q}

µ̄q,cl q(y). (6)
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For a given positive integer Nb ∈ Z>0, let ptNb
: [0, 1] → {0, 1, · · · , 2Nb − 1} be

a function defined as

ptNb
(m) := ⌈(2Nb − 1)m⌉, m ∈ [0, 1]. (7)

In our setting, ptNb
(m) is the plaintext that encodes a message m as unsigned

Nb−bit integer. Let BitDecNb
: {0, 1, · · · , 2Nb − 1} → {0, 1}Nb be the binary

representation of a Nb−bit unsigned integer. That is,

(bt1(m), · · · , btNb
(m)) = BitDecNb

(ptNb
(m)), (8)

where btk(m) ∈ {0, 1} for all k ∈ {1, 2, · · · , Nb}. Let Nc be the ciphertext
dimension set for a given value of security bits, say 128 bits security. Let sk ∈
{0, 1}Nc be a secret key generated for TFHE encryption. Let ctsk(bt) ∈ T

Nc+1,
where T = R/Z, be the TFHE encryption of a bit bt ∈ {0, 1}, i.e.,

ctsk(bt) = TFHE.Encryption(bt; sk). (9)

Let cpsk,Nb
: [0, 1] → T

Nb(Nc+1) be a function defined as

cpsk,Nb
(m) := (ctsk (bt1(m)) , · · · , ctsk (btNb

(m))) (10)

where ctsk (btk(m)) is the TFHE encryption of bit btk(m). Thus, cpsk,Nb
(m)

homomorphically encrypts the message m ∈ [0, 1] with Nb-bit precision.

Algorithm 1 Implementing secure federated learning based on KAHM and FHE
Require: Input data vector y; Q different parties participating in collaborative learning each

of which owns local KAHMs (such that q−th party’s local KAHMs, {WY
q
c
}
C
c=1

, are built

with private dataset {Y
q
1
, · · · , Y

q

C
}); and a secret key sk.

1: Choose bits precision Nb ∈ Z>0, e.g., Nb = 16.
2: The output of each local classifier to the input y is encrypted and then exported to the

cloud. That is, the q−th party exports {cpsk,Nb
(cl q), cpsk,Nb

(µ̄q,cl q(y))} to the cloud.
3: The global classifier is homomorphically evaluated in the cloud from the encrypted

data sent by all parties using TFHE [16], and the resulting output (which re-
mains encrypted) is returned to the owner of input data. That is, data
{cpsk,Nb

(cl q), ctsk(δ(µ̄q,cl q(y), µ̄q∗,cl q∗ (y))) | q = 1, · · · , Q} are returned by the cloud to
the owner of input data vector y.

4: The user (i.e. owner of the input data) decrypt the encrypted data provided by the cloud.
That is, user obtains after decryption {cl q, δ(µ̄q,cl q(y), µ̄q∗,cl q∗ (y)) | q = 1, · · · , Q}.

5: The user determines the class-label GC(y) associated to the input y using (5).
6: return GC(y).

The proposed approach to homomorphically evaluate the global classifier (1)
is illustrated in Fig. 1 and Algorithm 1 provides implementation procedure.

3 Experiments

Algorithm 1 was implemented using MATLAB R2017b and TFHE library [16] on
a MacBook Pro laptop with a 2.2 GHz Intel Core i7 processor and 16 GB of mem-
ory. The secret key is generated using TFHE library for 128-bits of security and

124

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



method accuracy time (sec.)
Algorithm 1 (16-bits precision) 0.9859 5

differentially private federated learning (ǫ = 0.1) [13] 0.7552 n/a
differentially private federated learning (ǫ = 1) [13] 0.9470 n/a

NN-20 [17] 0.971 115.52
NN-50 [17] 0.947 233.55
NN-100 [17] 0.830 481.61

Table 1: Experimental results on MNIST dataset.

experiments are performed with the precision of 16-bits. The experiments are on
the widely used MNIST digits dataset containing 28 × 28 sized images divided
into training set of 60000 images and testing set of 10000 images. The 28 × 28
normalized values of each image were flattened to an equivalent 784−dimensional
data vector. A two-party scenario is considered such that Party-A owns all the
training images of odd digits while Party-B owns the rest training images of even
digits. The aim of the experiments is to 1) compare Algorithm 1 in-terms of test
data accuracy with the alternative KAHM based federated learning method [13]
where differentially private fabricated data are used for privacy-preservation;
and 2) compare Algorithm 1 in-terms of test data accuracy and computational
time required for secure homomorphic computations in the cloud (i.e. the time
required for computing the encrypted global output for a given input) with the
state-of-art study [17] on homomorphic inference of deep neural networks. The
study in [17] evaluates neural networks with different depths (referred to as NN-
20, NN-50, and NN-100) over TFHE fully homomorphic encrypted data. The
experimental results, reported in Table 1, lead to the following inferences:

1. FHE based Algorithm 1 is more accurate than the reference differential
privacy based alternative [13] in high-privacy regime (i.e. in lower range
of privacy-loss bound ǫ).

2. Algorithm 1 is more accurate and several times computationally more ef-
ficient than the homomorphically evaluated deep neural networks by the
reference method of [17].

4 Concluding Remarks

The recently introduced geometrically inspired kernel machines facilitate secure
federated learning using FHE while offering simultaneously accuracy and com-
putational efficiency.
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