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Abstract. So far, models that take advantage of sequences of events
to refine time series prediction have only been designed for specific ap-
plications. In this paper, we introduce the Non-Homogeneous Markov
Chain AutoRegressive (NHMC-AR) model. In our model, the innovation
arises from the synchronization of a multivariate Hawkes temporal point
process with an autoregressive first-order hidden Markov model, through
contextual variables. Experiments on anaesthesia data demonstrate that
NHMC-AR has substantially better predictive performance compared to
two competing methods.

1 Introduction and motivation
The histories of events in systems or their environments are now being collected
alongside multivariate time series (MTSs) as event logs (ELs), in an increasing
number of systems. We therefore face unprecedented opportunities to develop
frameworks for jointly modelling an MTS and an EL. Such joint models are
largely absent to date, except for specific tasks such as survival analysis and
rare event prediction [1].

The motivation for the joint model presented here originates from a demand
of healthcare professionals for data-driven simulation training in anaesthesia.
Since 2000, Nantes University Hospital has been recording anaesthesia profiles
for all surgical procedures performed. An anaesthesia profile consists in an MTS
and an EL, for a patient characterized by sex, age, weight, medical antecedents
and surgery undergone. The MTS describes the evolution of physiological vari-
ables throughout the surgical operation. The EL records the medical actions
performed on the patient during the surgery.

So far, no application-independent approach exists in the literature, that can
achieve contextualized time series predictions informed by sequences of events.
To fill this gap, we introduce the Non-Homogeneous Markov Chain AutoRegres-
sive (NHMC-AR) model.

∗Fatoumata Dama was supported by a PhD scholarship granted by the French Ministery for
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(Centre de Calcul Intensif des Pays de la Loire, Nantes, France).
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(a) NHMC-AR(q,p “ 2) (b) PHMC-MLAR(q,p “ 2)

Fig. 1: Conditional independence graphs for (a) the Non-Homogeneous Markov
Chain AutoRegressive model and (b) the Partially Hidden Markov Chain Mul-
tivariate Linear AutoRegressive model. To simplify, we consider a univariate
time series (d “ 1). t: time; St: state; Xt: (observed) data measure point of the
time series; Ct: (observed) contextual variable. Blue color: observed item; pink
color: latent state. In (a), all states are latent. In (b), S1 and St are latent. S2

is observed. S3 and St´1 are partially observed (i.e., the state value is known to
belong to some subset of the set of all observable states, of size P [2, q ´ 1]).

2 Model definition
Let x be an MTS collected by d sensors. This MTS is a sequence of length
T , xT

1 “ tx1, x2, . . . , xT u, where xt P R
d is a d-dimension data point at time t

(t “ 1, 2, ¨ ¨ ¨T ). Let E “ t1, 2, . . . , ru be a finite set of r event categories, whose
discrete events are likely to influence the behavior of the system considered. We
can map each time t P [1,T ] to a time stamp ωt P R

`, on the continuous time
line. Let Log “ tpei, tiqueiPE,i“1,¨¨¨N (ti ă ti`1 ď ωT ) the log of time-stamped
events observed in parallel to xT

1 . At a given time t, the history of past events
of the MTS is the subsequence Ht of Log whose events occurred at time stamps
ti ď ωt.

The first innovation in NHMC-AR lies in the incorporation of contextual
variables that allow the propagation of time-varying information from an EL to
an observed time series xT

1 . Given the context Ht, we must define a function Φ
to calculate the contextual variable ct “ ΦpHtq. We assume that Φ is constant
over time. The second key innovation is the use of the Hawkes temporal point
process framework [4] in the design of the contextual variables.

2.1 Three stochastic processes at work

Figure 1 (a) illustrates the two conditional independence assumptions that gov-
ern the relations within (tStu, tXtu, tCtu) in the NHMC-AR model. We denote
by q the finite number of observable states of the system. The dependence of St

on St´1 and Ct characterizes a Markov chain (first-order hidden Markov model)
which is non-homogeneous. The dependence of Xt on St and the p lagged vari-
ables Xt´1

t´p features a state-specific dynamics. The latter is described through a
state-specific Linear AutoRegressive (LAR) model, in the NHMC-AR model.

2.2 Contextual variables

Recent works have highlighted the relevance of Hawkes temporal point processes
(HTPPs) to extract features from sequences of events, for classification tasks [3].
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Let λpω | Htq “ pλ1p.q, λ2p.q, . . . , λrp.qq the intensity function of the HTPP. Each
term λepωqδt (e “ 1, 2 ¨ ¨ ¨ r) defines the probability that the event from category
e occurs in interval rω, ω ` δtr, given the history of past events:

λepω | Htq “ µe `
ÿ

pei,tiqPHt

ζe,ei ρ expp´ρpω ´ tiqq, ti ď ωt ď ω, e, ei P E ,

with µe, ζe,ei , ρ P R
`, respectively the basic intensity for events of type e, the

positive influence of ei category’s events on e category’s, and a decay parameter.
We now make the link between Φ and the HTPP, and we define the contextual

variable as ct “ ΦpHtq P R
r, with ct,e “ λepωt | Htq, e “ 1, 2, ¨ ¨ ¨ , r.

2.3 Transition probabilities

We model the time-varying transition probability bi,jptq from state i to state j

as the interaction between two terms:

bi,jptq “ P pSt “ j | St´1 “ i, Ct “ ctq “
ai,j ˆ Gpct; i, jq

řq

k“1 ai,k ˆ Gpct; i, kq
t “ 2, 3, . . .

The term ai,j “ P pSt “ j|St´1 “ iq denotes the standard transition proba-
bility in homogeneous Markov chains. The term Gpct; i, jq quantifies the effect
of the contextual variable ct on transition i Ñ j. Since this term contributes
to favor or impede transition i Ñ j, it also impacts the change in the behavior
of the MTS. Function G is defined as a regression of the r components of the
contextual variable:

Gpct; i, jq “ exp

˜

r
ÿ

e“1

ηi,j,e ˆ ct,e

¸

.

The parameter ηi,j,e P R represents the specific impact of the event category e

on the transition i Ñ j.

3 Parameter estimation
We denote by θpSq “ pπi, ai,j , ηi,j,eqi,j“1,...,q;e“1,...,r the parameters associated
with the state process, where πi is the probability that the initial state S1 is
i. The parameters associated with the emission probabilities

`

P pXt “ xt |

Xt´1
t´p , St “ kq

˘

k“1,...,q
are θpXq “ pθpX,1q, . . . , θpX,qqq. The set θpX,kq repre-

sents the parameters specific to the LAR model used for state k. To estimate
θ “ pθpXq, θpSqq from a training set consisting of pairs of MTSs and ELs, we
employ an Expectation-Maximization (EM) approach. EM iteratively computes

estimates θ̂n by alternating E and M steps until convergence:

E step Qpθ, θ̂n´1q “ E
P pST

1
| XT

1´p
,CT

1
; θ̂n´1q rlnLc

cpθqs

M step θ̂n “ argmax
θ

Qpθ, θ̂n´1q,

whereX0
1´p represents the p initial values of the MTS tXtu and P pST

1 |XT
1´p, C

T
1 ;

θ̂n´1q is the a posteriori law of the latent states ST
1 given the current approxima-

tion θ̂n´1. The term Lc
cpθq “ P pXT

1 “ xT
1 , S

T
1 “ sT1 | X0

1´p, C
T
1 “ cT1 ; θq is the

conditional likelihood of the completed data of the NHMC-AR model. The term
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lnLc
cpθq is a random variable; the term Q represents its expectation with respect

to the a posteriori law of ST
1 . We use the conditional independence graph of the

model (Fig. 1 (a)) to decompose Lc
c: L

c
cpθq “

śT

t“1 fstpxtq πs1

śT

t“2 bst´1,stptq,
where fkpxtq is the emission probability in state k.

To perform the E-step, we adapted the standard forward-backward recur-
sive algorithm used for the homogeneous Markov chains. Then, in a nutshell,
once Q is calculated, its maximization divides into q ` 1 sub-problems whose

object is to maximize pQ
pkq
X qk“1,2,¨¨¨ ,q and QS . Under some precautions not de-

tailed here, analytical expressions may be derived for the Q
pkq
X terms. Maximiz-

ing QS requires numerical optimization methods (e.g., quasi-Newton methods).
The source codes for the NHMC-AR model are available at
https://github.com/reviewerchris/repository nhmc-ar c1 c2 23 04 24 mon 20h40.

4 Evaluation of the model

4.1 Experimental settings

Dataset. We obtained access to data describing laparoscopic inguinal hernia
surgery, for 1000 male patients around 30 years, and with no medical antecedents.
The MTSs describe 4 physiological variables: heart frequency (HF); systolic,
average and diastolic blood pressures (SBP, ABP, DBP). ABP is not computed
as the mean of SBP and DBP but is measured separately. We consider a training,
validation, and test set of sizes 500, 200 and 300 anaesthesia profiles, respectively.

We identified r “ 5 categories of events: H (administration of hypnotics),
M (administration of morphinics), 3 levels of painful stimuli (PL: low, PM :
medium, PH : high). The 5 categories are present in all the ELs of the data.

Extraction of the contextual variables defined via a Hawkes process.
We employed the least squares method with Ridge regression to estimate the
parameters pµe, ζe,eiqe,ei“1,2,¨¨¨ ,r of the Hawkes process, using the training set.
We varied the decay hyperparameter ρ in a grid search as well as the regular-
ization parameter C. We selected the HTPP that yielded the highest prediction
accuracy for the categories of events, on the validation set. Then we computed
the contextual variables for the anaesthesia profiles of the training set.

Competing methods. We identified no application-independent model able
to predict MTSs informed by ELs. Thus, we developed an alternative version
of NHMC-AR, denoted NHMC-AR-B, in which the context variables are de-
fined as ct “ ΦBpHtq P R

r`1, with ct,r`1 “ ωt and ct,e “ max tti | pei, tiq P
Ht and ei “ eu, e P E . The term GBpct; i, jq is an exponential function of the
sum of weighted impacts of events and pairs of events (not shown). In contrast
to NHMC-AR, the extraction of the contextual variables is straightforward.

The recent state-of-the-art modelPHMC-MLAR (Partially Hidden Markov
Chain Multivariate Linear AutoRegressive model) [2] (https://github.com/damaf/
phmc-mlar) is an MSAR which is able to handle partially annotated states (see
Figure 1 (b)). In our experiments, we use the partial state annotation principle
to synchronize an MTS and its EL before training or using the model: at time
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Model
Number of categories Number of latent Total number

of events (nc) states (nℓ) of states (q)

PHMC-MLAR-5 5 {H, M, PL, PM , PH} 0 to 1 5 to 6

PHMC-MLAR-4 4 {H, M, PLM , PH} 0 to 2 4 to 6

PHMC-MLAR-3 3 {H, M, PLMI} 0 to 3 3 to 6

Table 1: Categories of events in the 3 PHMC-MLAR versions. (q “ nc ` nℓ)

t, if no event occurred in sωt´1, ωts, St is a latent state; otherwise, St is set as
the subset of the categories of events that occurred in this interval. We chose to
examine three versions of PHMC-MLAR: in PHMC-MLAR-5, we consider the
5 categories of events H, M, PL, PM and PH . Table 1 shows how we merged
painful stimuli to obtain the versions PHMC-MLAR-3 and PHMC-MLAR-4.

Evaluation metric. We assessed the predictive performance of trained mod-
els through the Mean Absolute Percentage Error (MAPE) defined as mape

“ 100
N

řN
i“1

ˇ

ˇ

ˇ

oi´pi

oi

ˇ

ˇ

ˇ
, where oi and pi are the observed and predicted values for

ith prediction. Given a prediction horizon h and a physiological variable, we
compute the MAPE value of a time series of length T by varying the prediction
origin in [p ` 1,T ´ h]. We can compute an average MAPE on a validation or
test set. By summing the average MAPEs of the 4 variables, we obtain a global
predictive performance, further denoted MAPE-G. We made the predictions un-
der the same condition as in the application targeted: no event will occur within
the prediction horizon. To simulate a patient, we chain h-ahead predictions, at
times t, t`h, t`2h ¨ ¨ ¨ . When a medical action is triggered, a h-ahead prediction
is performed earlier than expected, which starts a new series of predictions.

4.2 Results

We varied the number of states q in [2,5] to select the 2 NHMC-AR models. We
varied q as shown in Table 1 (3rd and 4th columns) for the 3 PHMC-MLAR
versions. For all 5 models, the autoregressive order p was chosen in [0,5]. We
first pre-selected the 6 configurations pq, pq showing the lowest BIC scores on
the training set, for each of the 5 models. Then, we selected one configuration
for each of NHMC-AR and NHMC-AR-B, and one from the 3 PHMC-MLAR
versions: to this end, we computed the MAPE-G criterion at prediction horizon
10, on the validation set. The 3 selected models are PHMC-MLAR-4(q “ 6,
p “ 2), NHMC-AR-B(q “ 4, p “ 3) and NHMC-AR(q “ 4, p “ 5).

Figure 2 allows to compare the distributions of MAPE values across the 4
variables and the 10 horizons. For the PHMC-MLAR-4 selected, regardless of
the prediction horizon, the average MAPE is lower than 6.8%, 9.0%, 9.0% and
10.3% for HF, SBP, ABP and DBP, respectively. These maxima are 7.3%, 10.4%,
10.4% and 13.5% for the NHMC-AR-B selected. The maxima obtained for the
NHMC-AR selected are much lower: 4.9%, 5.4%, 5.6% and 5.1%. NHMC-AR is
also the only model to present stable predictive performances over all horizons.
Table 2 recapitulates the global predictive performances of the 3 models.
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(a) HF (b) SBP (c) ABP (d) DBP
Fig. 2: Predictive performances of the 3 selected models, for the 4 physiological
variables, and for 10 prediction horizons. HF: heart frequency; SBP, ABP, DBP:
systolic, average and diastolic blood pressures. Red: PHMC-MLAR. Green:
NHMC-AR-B. Blue: NHMC-AR. MAPE values are computed over the test set.
NHMC-AR shows the lowest MAPEs, which are stable across the horizons. Glob-
ally, PHMC-MLAR shows better performances than NHMC-AR-B.

Model
Horizon

1 2 3 4 5 6 7 8 9 10

PHMC-MLAR 20.6 25.8 29.0 30.8 32.1 33.3 34.1 34.7 34.7 34.6

NHMC-AR-B 23.0 32.1 28.4 34.3 36.3 38.1 39.4 40.3 40.5 40.2

NHMC-AR 17.5 19.0 20.1 19.7 20.5 20.5 20.7 20.8 20.7 20.6

Table 2: Global predictive performance (MAPE-G) of the 3 selected models,
over the 4 physiological variables. MAPE-G is computed on the test set.

5 Conclusion
The NHMC-AR model is an extension of the hidden Markov Model in which
the latent state process is conditioned on contextual variables. The latter are
derived from the history of past events collected in parallel to the time series.
The Hawkes point process framework is used for this purpose. NHMC-AR sub-
stantially outperforms a recent state-of-the art model adapted for event-based
time series prediction, as well as another NHMC-AR instantiation. Future work
will involve investigating other temporal processes than the Hawkes process.
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