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Abstract. Learning marked temporal point process (TPP) models in-
volves modeling both the event arrival times as well as their associated
labels, referred to as marks. The recent introduction of deep learning
techniques to the field led to better modeling of event sequences thanks to
more flexible neural TPP models. However, some of these models make
the assumption that event marks are independent of event times given the
history of the process, which may not be valid in many applications. We
relax this assumption and explicitly parametrize the mark distribution as
a function of the current event time. We show that our approach achieves
improved performance in predicting future marks compared to baselines
on multiple real-world event sequence datasets, without affecting the per-
formance on event time prediction.

1 Introduction

A broad range of systems are often characterized by sequences of discrete events
taking place at irregular time intervals. Common examples may include users
activity on a social media platform, e-commerce transactions, or earthquakes
manifestations. Given past realizations of a system of interest, one may be in-
terested in capturing the correlations among past event occurrences to enable
prediction of future ones. In practice, these events are often associated to addi-
tional information, such as discrete classes, or marks, that we may wish to infer
along the corresponding timestamp. Temporal Point Processes (TPP) [1] provide
a powerful mathematical framework for modeling these streams of asynchronous
and cross-correlated event data. However, classical parametrizations of TPP
models, such as the Hawkes process [2], have often been criticized for their lack
of flexibility in modeling complex event dynamics [3]. To increase the models’
capacity, deep learning methods have been introduced to the field of TPP, in-
cluding RNN [4] and self-attention mechanisms [5, 6]. Among these neural TPP
architectures, LogNormMix [7] has proven itself to be a strong baseline in fitting
the distribution of future event arrival times, often outperforming more recent
architectures [8]. However, by assuming that the marks are conditionally inde-
pendent of time given a process history, LogNormMix can hinder performance
in capturing the dynamic of mark occurrences if this assumption is not valid. In
this work, we provide a simple yet useful modification in the parametrization of
LogNormMix to account for the dependence of future marks on time. Through
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experiments on 6 real-world datasets, we show that our approach often out-
performs LogNormMix in predicting future marks, while keeping similar fitting
capabilities when estimating the distribution of future arrival times.

2 Background and notations

Marked temporal point processes (MTPP) are stochastic processes whose re-
alizations consist in sequences of n discrete events S = {ei = (ti, ki)}ni=1 ob-
served within a fixed window [0, T ]. For each event ei, ti corresponds to the
event arrival time with 0 ≤ t1 < ... < tn ≤ T , while ki ∈ K = {1, ...,K} is
the associated mark, or class to which the event belongs. Note that S can be
equivalently represented as {ei = (τi, ki)}ni=1, where τi = ti − ti−1 is the event
inter-arrival time. We will use both representations interchangeably through-
out the paper. In an MTPP, the occurrence of future arrival times and marks
can be fully characterized through the conditional joint distribution f(t, k|Ht),
where Ht = {(ti, ki ∈ S)|ti < t} is the process history up to time t. For
clarity, we will employ the notation ’∗’ of [1] to indicate dependence on Ht,
i.e. f(t, k|Ht) = f∗(t, k). Provided a parametric form of f∗(t, k;θ), the most
common approach to learning the set of parameters θ is achieved by negative log-
likelihood (NLL) minimization. Given a sequence S of n events, and by noting
f∗(t, k;θ) = f∗(t;θ)p∗(k|t;θ) with p∗(k|t;θ) being the conditional distribution
of marks, the NLL objective writes [9]:

L(θ;S) = −
n∑

i=1

log f∗(ti;θ) + Λ∗(T ;θ)︸ ︷︷ ︸
NLL-T

−
n∑

i=1

log p∗(ki|ti;θ)︸ ︷︷ ︸
NLL-M

, (1)

where Λ∗(T ;θ) =
∑K

k=1

∫ T

tn

f∗(t,k;θ)
1−F∗(t;θ)dt accounts for the fact that no event was

observed in ]tn, T ], with F ∗(t;θ) being the conditional cumulative distribution of
arrival times. From (1), we can see that learning a MTPP from a sequence essen-
tially reduces to two learning problems: 1) learning the conditional distribution
of arrival-times f∗(t) through the NLL-T term, and 2) learning the conditional
distribution of marks p∗(k|t) through the NLL-M term. In the following, we
refer to these two problems as the time prediction and mark prediction tasks,
respectively.

3 Our TPP model

Modeling future inter-arrival times. Suppose ti−1 is the last observed event
in a sequence S. To model the density of the next inter-arrival time τ = t− ti−1,
we employ the LogNormMix (LNM) model [7], which defines f∗(τ) as a mixture
of log-normal distributions. Specifically, given h ∈ Rdh , a representation of the
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history Ht of a query event e = (t, k) with t > ti−1, LNM defines f∗(τ) as:

f∗(τ) =
M∑

m=1

pm
1

τσm

√
2π

exp

(
(log τ − µm)2

2σ2
m

)
, (2)

where pm = Softmax (Wmh+ b)m corresponds to the probability that τ
was generated by the mth mixture component, while µm = wµh+ bµ and
σµ = exp(wσh+ bσ) are the mean and standard deviation of the mth mixture
component, respectively. Wm ∈ RM×dh , with M being the number of mixture
components, b ∈ RM , wµ,wσ ∈ Rdh , and bµ, bσ are scalars. Similar to [4, 7],
the history embedding h is obtained sequentially by applying a GRU on Ht,
i.e. h = GRU(ei−1,hi−2), where ei−1 = [eti−1||eki−1] ∈ Rde is an encoding of
ei−1 = (ti−1, ki−1). In this last expression, eti−1 ∈ Rdt and eki−1 ∈ Rdk are
encodings of ti−1 and ki−1 respectively, while || refers to the concatenation
operator. Following [5, 6, 8], we construct eti−1 using a vector of sinusoidal
functions on ti−1, and eki−1 by passing ki−1 through a mark embedding layer, i.e.
eki−1 = WKki−1, where WK ∈ Rdk×K and ki−1 ∈ RK is the one-hot encoding
of ki−1. Finally, hi−2 corresponds to the history embedding of ei−1. Despite
its apparent simplicity, modeling the conditional distribution of inter-arrival
times with a mixture of log-normal distributions has often proven to be a strong
inductive bias in real-world event sequence datasets [6, 8, 10].

Modeling future marks. LNM defines a categorical distribution over future
marks using a softmax transformation applied to a feed-forward layer on the
history embedding,

p∗(k|t) = p∗(k) = Softmax (W2tanh (W1h+ b1) + b2) , (3)

where W2 ∈ RK×d1 , W1 ∈ Rd1×dh , b1 ∈ Rd1 , and b2 ∈ RK are learnable
parameters. Note that in this expression, the mark distribution is made explicitly
independent of the time given the history of the process. While this simple time-
independent approach had also been used in earlier works [4], we believe that
the knowledge of an event arrival time conveys useful information regarding
the occurrence of its associated mark. In this regard, we aim to define the
probability distribution over future marks as being explicitly dependent on the
present (inter-arrival) time, as well as on the process’ history. Given an encoding
et ∈ Rdt of a query time t ≥ ti−1 and h, we define the conditional distribution
of marks as:

p∗(k|t) = Softmax
(
W2ReLU

(
W1[h||et] + b1

)
+ b2

)
, (4)

whereW1 ∈ Rd1×(dh+dt). While we chose to encode eti−1 as a vector of sinusoidal
functions to generate h, we empirically found that setting et = log τ worked
best in modeling p∗(k|t). The definition in (4) is flexible and can capture non-
monotonic dynamics of the mark distribution between two events. In summary,
our approach that we call CondLogNormMix (CLNM), models the joint
distribution of inter-arrival times and marks f∗(τ, k) = f∗(τ)p∗(k|τ) with f∗(τ)
given by (2), and p∗(k|τ) given by (4).
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4 Experiments

Datasets. Our experiments are based on six marked datasets frequently en-
countered in the TPP literature: LastFM [11], MOOC [11], Github [12], Stack
overflow [4], Retweets [3], and Reddit [11]. Each dataset is filtered to contain
at most its 50 most represented marks, and sequences containing less than two
events are discarded. Additionally, the event arrival times are scaled in the inter-
val [0, 10] to avoid numerical instabilities, and we only keep 50% of the sequences
originally contained in Reddit and Retweets to reduce computational time.

Experimental setup. We compare our CLNM model on the mark prediction
task, described in Section 2, against three baselines: 1) The original formula-
tion of LNM, where p∗(k|t) is defined by (3), 2) A multivariate Hawkes pro-
cess [2], and 3) The flexible self-attention decoder (SA/MC) introduced in [8].
Both Hawkes and SA/MC model the dependency of marks on time through the
intensity function. Conversely, CLNM is an intensity-free TPP model which
parametrizes the inter-arrival times and marks distributions separately. For
each dataset, we randomly split the sequences into 5 train/validation/test splits
following a 60%/20%/20% partition, respectively. The models are trained to
minimize the NLL in (1) on the training sequences using mini-batch gradient
descent. Optimization is carried out using the Adam optimizer with a learning
rate of 10−3. For all models with the exception of Hawkes, we set dt = 4, dk = 4,
and dh = 16. Additionally, for LNM and CLNM, d1 = 16, and the number of
mixture components is fixed at M = 16.

Evaluation metrics. As this paper mostly relates to the distribution of fu-
ture marks, we mainly focus our analysis on the mark prediction task. To this
end, we report for each dataset the NLL-M as defined in (1) averaged over all
test sequences, as well as the F1-score, where we predict the next mark using
k̃ = argmax

k
p∗(k|t). Moreover, to evaluate the statistical consistency between

the mark predictions and the actual observations, we asses the calibration of
the different approaches with respect to the mark distribution by means of the
Expected Calibration Error (ECE) and reliability diagrams [13]. Finally, for
completeness, we also report the NLL-T term in (1) to compare the different
baselines on the time prediction task. Lower NLL-M, NLL-T and ECE is better,
while higher F1-score is better.

Results and discussion. Table 1 displays the baseline results with respect to
the aforementioned metrics on all datasets, averaged over the different splits. We
observe that CLNM often yields improvements on the mark prediction task in
comparison to the time-independent LNM model, as illustrated by lower NLL-
M and ECE, and a higher F1-score on most datasets. This suggests that the
inclusion of an explicit time dependency in the mark distribution makes our
approach more amenable to capturing complex dynamics of mark occurrences
in real-world datasets compared to the original formulation of LNM. However,
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NLL-M
LastFM MOOC Github Stack Overflow Reddit Retweets

LNM 690.4 (17.5) 88.32 (1.46) 115.94 (15.3) 106.41 (0.68) 44.52 (1.19) 83.47 (0.25)
CLNM (Ours) 670.37 (16.3) 77.76 (0.87) 112.38 (14.96) 103.03 (0.67) 42.24 (1.18) 83.16 (0.22)

Hawkes 514.13 (16.19) 112.14 (1.26) 122.44 (15.5) 114.99 (0.75) 59.07 (1.06) 90.46 (0.34)

SA/MC 844.95 (23.67) 95.06 (1.6) 131.8 (18.75) 105.31 (0.35) 48.3 (1.61) 84.0 (0.29)

ECE
LastFM MOOC Github Stack Overflow Reddit Retweets

LNM 0.17 (0.03) 0.08 (0.02) 0.14 (0.0) 0.08 (0.02) 0.03 (0.0) 0.07 (0.01)

CLNM (Ours) 0.07 (0.02) 0.03 (0.0) 0.15 (0.0) 0.02 (0.0) 0.03 (0.0) 0.06 (0.0)

Hawkes 0.03 (0.0) 0.14 (0.0) 0.07 (0.02) 0.09 (0.02) 0.05 (0.0) 0.12 (0.0)

SA/MC 0.46 (0.02) 0.12 (0.02) 0.18 (0.01) 0.02 (0.0) 0.06 (0.0) 0.09 (0.0)

F1-score
LastFM MOOC Github Stack Overflow Reddit Retweets

LNM 0.2 (0.01) 0.4 (0.0) 0.57 (0.01) 0.33 (0.0) 0.81 (0.0) 0.6 (0.0)

CLNM (Ours) 0.22 (0.01) 0.51 (0.0) 0.6 (0.01) 0.35 (0.0) 0.81 (0.0) 0.6 (0.0)

Hawkes 0.3 (0.0) 0.29 (0.0) 0.54 (0.01) 0.32 (0.0) 0.81 (0.0) 0.55 (0.0)

SA/MC 0.02 (0.01) 0.33 (0.0) 0.47 (0.02) 0.34 (0.0) 0.8 (0.0) 0.6 (0.0)

NLL-T
LastFM MOOC Github Stack Overflow Reddit Retweets

LNM -1330.37 (57.5) -308.49 (3.63) -380.67 (60.08) -91.05 (1.42) -96.31 (2.11) -600.22 (3.22)
CLNM (Ours) -1323.98 (58.94) -308.27 (3.77) -379.21 (59.45) -90.99 (1.37) -96.27 (2.01) -598.36 (3.7)

Hawkes -1189.48 (55.2) -235.9 (3.09) -308.42 (57.77) -83.18 (1.4) -75.6 (2.06) -553.18 (1.91)
SA/MC -1026.48 (42.43) -239.7 (2.76) -320.67 (55.68) -87.12 (1.44) -87.32 (2.09) -576.61 (1.8)

Table 1: Baselines results on different datasets. Standard error across all splits
is reported in parenthesis. Best results are highlighted in bold, and further
underlined if the difference with the second best is larger than a standard error.

despite being dominated by other baselines for most datasets on the mark pre-
diction task, we notice that the multivariate Hawkes model achieves top perfor-
mance on the LastFM dataset. Events in LastFM are usually highly clustered
per mark, and we believe that the assumption of strictly additive influence of
past events in a Hawkes process makes it more prone to capture such dynamics.
Nonetheless, while improving performance on the mark prediction task, CLNM
does not induce significant changes in NLL-T compared to LNM, which remains
the strongest baseline on the time prediction task. On Figure 1, we show the
reliability diagrams of the mark distribution of all baselines on the LastFM and
MOOC datasets. Consistently with the ECE values of Table 1, CLNM shows
improved calibration compared to LNM, indicated by the bins’ accuracy better
aligned with the diagonal. Specifically, we notice a higher number of samples
falling into the high probability bins for CLNM, meaning that the latter assigns
more confidence to correct predictions. For instance, on LastFM, LNM makes
no correct prediction with probability in [0.8,1].

5 Conclusion

In this work, we discarded the simplifying assumption of LNM that models
the distribution of future marks as being conditionally independent of the time
given the history of the process. Through experiments on 6 real-world event
sequence datasets, we show that our approach often outperforms the original
time-independent LogNormMix model on the mark prediction task, along other
time-dependent baselines. This suggests that, despite its simple formulation,
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Fig. 1: Reliability diagrams of the distribution of marks on LastFM and MOOC.
Front rows depict a model’s average accuracy per bin, while bottom rows show
the average proportion of samples falling per bin.

CLNM is more amenable to capture mark dependencies across events, without
affecting the strong predictive power of LogNormMix on the time prediction
task. We hope that our results will inspire new developments regarding the
modeling of future marks in the field of TPPs.
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