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Abstract. In this paper, we explore the usage of hierarchical priors
to improve learning in contexts where the number of available examples
is extremely low. Specifically, we consider a Prototype Learning setting
where deep neural networks are used to embed data in hyperspherical
geometries. In this scenario, we propose an innovative way to learn the
prototypes by combining class separation and hierarchical information. In
addition, we introduce a contrastive loss function capable of balancing the
exploitation of prototypes through a prototype pruning mechanism. We
compare the proposed method with state-of-the-art approaches on two
public datasets.

1 Introduction

Prototype Learning (PL) [1] has shown interesting results in contexts where data
is scarce [2, 3]. In this context, it is common to use a cosine measure to esti-
mate the similarity between examples and prototypes. Also, by projecting the
embeddings onto the hypersphere, one enables the usage of fixed hyperspherical
prototypes [4]. Operating in this way, the embedding space can be evenly par-
titioned and each partition can be assigned to a single class prototypes. As a
consequence, the distance between class prototypes is maximized and it is not
needed to learn the prototypes during training.

On the other hand, the use of hierarchical knowledge as a prior for learning
the prototypes has been widely studied in the PL literature [5, 4, 6, 7], and
it has been shown to be rewarding in terms of accuracy. Indeed, breaking the
uniformity using a class taxonomy may improve the performances by allowing
to place the prototypes according to the natural distribution of the examples.

While we experimentally observed that the use of hierarchical information is
beneficial, we also noticed that prototypes of nearby concepts (in the hierarchy)
risk being positioned too close to each other, making it difficult to correctly
distinguish between the corresponding classes.

This work has been partially supported by the Spoke 1 ”FutureHPC & BigData” of ICSC
- Centro Nazionale di Ricerca in High-Performance-Computing, Big Data and Quantum Com-
puting, funded by European Union - NextGenerationEU.
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Fig. 1: Cost matrices for CIFAR100 and CUB2011 classes. Each entrance represents the
length of the shortest path in the tree to reach one class starting from the other. Yellow is
the maximum distance (e.g. 10 in a 5 deep hierarchy) and purple is the lower (always 0 for
elements in the diagonal). CIFAR100’s hierarchy has five levels, CUB2011 three.

Our contributions are as follows: in Section 2 we introduce a method to
weaken the hierarchical information as a way to overcome the aforementioned
problem; in Section 3, we introduce a contrastive loss along with a prototype
pruning mechanism to improve learning the embeddings; in Section 4 we consider
a baseline approach and two state-of-the-art methods and compare them with
our proposed approach on two publicly available datasets.

2 Prototypes Learning

Prototypes are the anchor points that determine the prediction. While more
general definitions are available, here we consider the setting where classes are
determined by proximity to a single fixed prototype. Specifically, closeness is
evaluated using cosine similarity in an embedding space learned by a neural
network.

In [4], the authors introduce hyperspherical prototypes, i.e., they propose a
method to learn equally spaced prototypes πi, i = 1, . . . ,K on the n-dimensional
hypersphere1 by minimizing the uniform loss LU :

LU (P ) =
1

K

K∑
i=1

max
j∈C

Mij , M = PP t − 2I, s.t. ∀i ∥Pi∥ = 1, (1)

where C is the set of classes, P ∈ RK×n denotes the current set of hyperspherical
prototypes, I denotes the identity matrix and M denotes a matrix containing
the pairwise cosine similarities between prototypes.

When a hierarchical structure is available over the classes, learning the points
uniformly on the hypersphere is not usually the best choice. Let us then assume
to have a tree-shaped hierarchy over the classes, and let us represent this in-
formation by means of a cost matrix H, such that Hij is the distance on the
hierarchy between class i and class j (see Fig. 1). In [5], this information is

1It is worth noting that positioning points uniformly on an n-dimensional hypersphere
cannot be done exactly in general.
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Fig. 2: Cosine distance matrices computed among CIFAR100 prototypes positioned with the
methods presented (darker colors are used for more similar prototypes). On the left prototypes
learnt minimizing LD. On the right, prototypes learnt minimizing LU . In the center prototypes
learnt by the combination of the two (our approach).

exploited by learning the prototype so to minimize the distortion loss LD:

LD(π) =
1

K(K − 1)
min
z∈R+

∑
k,l∈C

(
z · d(πk, πl)−Hk,l

Hk,l

)2

, (2)

where π = (π1, . . . , πK) and πk (πj) is the embedding of the k-th (j-th) proto-
type.

We claim that oftentimes, the hierarchical information may impact negatively
on the performances because it positions some of the prototypes too close to each
other. Here we propose to merge the previous methods in a two steps solution.
We start by learning the prototypes minimizing LD until convergence, then we
update them by minimizing LU . The result of the two-step procedure is a set of
prototypes that takes advantage of the hierarchical prior in a weakened fashion
since it also spreads them out on the hypersphere.

Fig. 2 shows the effect of our strategy. The three panels report matrices show-
ing with colors the cosine distances between πi and πj , for all i, j ∈ {1 . . .K}.
The left panel refers to the prototypes learned by minimizing LD (full hierarchy
in the following); the right panel reports about the prototypes learned by min-
imizing LU (no hierarchy); the central panel shows the results of our approach
(weak hierarchy). As it should be apparent, minimization of the distortion loss
tends to position prototypes close to each other, with the risk of making it diffi-
cult to distinguish between similar classes. Minimizing the uniform loss spreads
prototypes out, completely disregarding the hierarchical information. Our ap-
proach finds a compromise between these two extremes.

3 Learning Embeddings via Contrastive Learning

Mettes et al. [4] proposes a non-contrastive learning approach learning the
embeddings in a prototype learning setting. Their approach is based on the
minimization of the similarity between the examples of a given class and the
corresponding prototype embedding.
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Method Number of examples per class

Loss Hierarchy 10 15 20 25 30

cHPS 1
K

full 16.84± 0.55 20.96± 0.60 25.00± 0.47 28.47± 0.99 33.12± 0.51
weak 16.46± 0.75 19.95+0.60 24.59± 0.41 27.27± 1.51 31.89± 0.77
no 15.88± 0.64 18.21± 0.63 22.64± 0.76 25.56± 0.34 29.58± 0.63

cHPS0

full 14.50± 0.81 18.71± 0.54 23.33± 0.48 25.70± 1.47 30.06± 0.91
weak 16.49± 0.57 19.29± 0.64 24.26± 0.39 26.54± 0.68 31.54± 0.84
no 15.67± 0.35 18.15± 0.52 22.13± 0.44 25.12± 0.84 28.89± 0.80

HPS
full 11.02± 0.54 13.57± 0.50 16.04± 0.38 18.49± 1.01 21.25± 0.64
weak 15.39± 0.74 18.64± 0.21 21.67± 0.54 24.93± 0.81 27.44± 0.76
no 14.45± 0.80 17.78± 0.50 20.23± 0.59 22.96± 0.76 24.75± 0.67

HBL
full 16.89± 0.63 20.44± 0.63 23.52± 0.20 26.25± 0.41 28.35± 0.75
weak 17.13± 0.54 20.08± 0.45 23.48± 1.03 25.41± 0.53 27.36± 0.25
no 16.07± 0.28 19.78± 0.51 21.95± 0.55 23.93± 0.43 25.83± 0.44

CE - 13.95± 0.55 18.02± 0.36 21.23± 0.46 23.46± 0.73 27.24± 0.47

Table 1: Percentage of test accuracy for CIFAR100. For each dataset, we underline the best
result for each method, and show in bold the best overall method.

To improve this method, and following the insights in [8], we propose the
adoption of a contrastive loss function. In our proposal, the contrastive loss al-
lows pruning the contribution of the prototypes based on their likelihood of repre-
senting the correct class for the current example. Given a training set {xi; yi}Ni=1,
where yi ∈ C denotes the class label, let fθ(xi) denote the n-dimensional output
of a network fθ(·). The proposed contrastive loss function is defined as:

LC(θ; γ) =
1

N

N∑
i=0

− log
exp(sik,k)∑

j∈C∖{k} exp(s
i
k,j)1{pi

k,j>γ} + exp(sik,k)
, (3)

where sik,j = 1 + cos(fθ(x
i
k), πj) is a modified version of the cosine similarity

between the embedding fθ(x
i
k) and the prototype πj , x

i
k is the i-th observation

with true class k and pik,j =
exp(sik,j)∑
l∈C exp(sik,l)

is its probability of belonging to class

j. LC(θ; γ) depends on a threshold γ allowing the user to control the pruning
of prototypes that are less likely to provide useful contributions.

In the following, we will refer with cHPSγ to learning hyperspherical embed-
ding via minimization of contrastive loss LC with parameter γ. We note that
cHPS0 minimizes LC(θ; 0), which reverts to a standard contrastive loss that does
not prune any prototype.

4 Experiments and Results

We evaluated the effectiveness of our proposed approaches on two datasets: CI-
FAR100 [9] and CUB2011 [10].

The two datasets’ hierarchies were taken respectively from [5] and [11]. To
simulate the few data scenario we downsampled the original datasets (by extract-
ing at random a subset with m examples per class), trained a model and evalu-
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Method Number of examples per class

Loss Hierarchy 10 15 20 25 30

cHPS 1
K

full 12.21± 0.56 15.16± 0.85 17.10± 0.54 18.86± 0.37 19.47± 0.63
weak 11.82± 0.21 14.93± 0.42 16.91± 0.50 18.09± 0.58 18.95± 0.61
no 9.75± 0.35 12.37± 0.41 14.47± 0.59 15.60± 0.39 16.71± 0.55

cHPS0

full 9.39± 0.44 12.31± 0.45 14.44± 0.58 15.91± 0.40 16.56± 0.53
weak 11.27± 0.44 14.04± 0.44 16.39± 0.80 17.96± 0.37 18.83± 0.53
no 10.62± 0.49 13.74± 0.54 15.76± 0.32 17.45± 0.29 18.47± 0.26

HPS
full 8.09± 0.70 10.49± 0.58 12.59± 0.66 13.72± 0.44 14.45± 0.31
weak 8.93± 0.17 11.80± 0.57 13.68± 0.51 15.35± 0.21 16.56± 0.56
no 5.81± 0.47 9.49± 0.46 12.08± 0.83 13.81± 0.62 15.04± 0.46

HBL
full 12.01± 0.38 14.57± 0.60 16.04± 0.46 17.19± 0.65 18.26± 0.20
weak 12.06± 0.39 14.47± 0.79 15.94± 0.55 16.52± 0.71 17.25± 0.50
no 11.01± 0.35 12.86± 0.63 14.31± 0.35 15.12± 0.33 16.06± 0.52

CE - 9.84± 0.77 13.68± 0.51 16.12± 0.48 18.14± 0.30 19.11± 0.66

Table 2: Percentage of test accuracy for CUB2011. For each dataset, we underline the best
result for each method, and show in bold the best overall method.

ated it on a separated and fixed test set. We repeated for 5 times and present
the average over the 5 runs. We experimented varying m in {10, 15, 20, 25, 30}.

For our methods we trained a ResNet-18 network [12] from scratch, used
embedding dimension n = 64, and normalized the outputs to operate on the
hypersphere S63. All other hyperparameters have been set following [5] with
the exception of using a batch size of 32 instead of 128. We tested our method
with γ = 0 (cHPS0) and γ = 1/K (cHPS 1

K
, i.e., a prototype is included in the

loss only if its likelihood of corresponding to the correct class was better than
random chance).

For what concerns the prototypes, we experimented with three settings: full
hierarchy prototypes are obtained by minimizing the distortion loss LD using
the same hyperparameters used in [5]; no hierarchy prototypes were trained
minimizing the uniform loss LU using the same hyperparameters used in [4];
weak hierarchical prototypes (our proposal) were trained starting from the full
hierarchy prototypes and then minimizing the uniform loss. As regards the
uniform part, the learning rate has been set to 5e-3 for CIFAR100 and 5e-2
for CUB2011. All hyperparameters (with the exception of those set as in the
referred works) have been optimized on a separate validation set.

As competitors, we use HPS [4] and HBL [6], which were tested with their
original experimental setting. As a baseline, we also include results on a model
trained with the standard cross entropy classification loss. Table 1 and Table 2
show that hierarchical priors improve the performances, as the methods using
the prototypes that embed hierarchical information always outperform the uni-
form ones. For cHPS0 and HPS, our weak hierarchical prototypes provide the
best results. Interestingly, HBL performs better with the full hierarchy proto-
types, probably because the hyperbolic geometry allows for a better exploitation
of the hierarchical representations [13]. Our proposed cHPS 1

K
has the best per-

formances in almost every experiment, rewarding the pruning of the prototypes.
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On the other hand, weak hierarchical prototypes do not seem to provide benefits
with this method. Investigating why full hierarchical prototypes benefits both
HBL and cHPS 1

K
is an interesting direction for future research.

5 Conclusions

In this paper we introduce a way to weaken the hierarchial information, a con-
trastive loss for hyperspherical embeddings, and a prototype pruning mechanism.
We provide experimental evidences that validates these contributions. Results
show that: i) a weak use of the hierarchical information improves results in
hyperspherical geometries when no prototype pruning is performed; ii) the con-
trastive loss function combined with prototype pruning compares favorably with
state-of-the-art methods.

Experimental evidence also shows that combining prototype pruning and
weakening the hierarchical information is not always beneficial. We believe this
to be an interesting observation, explaining why this is the case is not trivial
and worthy of further research.
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