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Abstract. The prediction of chemical toxicity and adverse side effects
is a crucial task in drug discovery. Graph neural networks (GNNs) have
accelerated the discovery of compounds with improved molecular profiles
for effective drug development. Recently, Transformer networks have also
managed to capture the long-range dependence in molecules to preserve the
global aspects of molecular embeddings for molecular property prediction.
In this paper, we propose a few-shot GNN-Transformer, FS-GNNCvTR to
face the challenge of low-data toxicity and side effect prediction. Specifi-
cally, we introduce a convolutional Transformer to model the local spatial
context of molecular graph embeddings while preserving the global infor-
mation of deep representations. Furthermore, a two-module meta-learning
framework is proposed to iteratively update model parameters across few-
shot tasks with limited available data. Experiments on small-sized bio-
logical datasets for toxicity and side effect prediction, Tox21 and SIDER,
demonstrate a superior performance of FS-GNNCvTR compared to stan-
dard graph-based methods. The code and data underlying this article are
available in the repository, https://github.com/larngroup/FS-GNNCvTR.

1 Introduction

Toxicity and side effect prediction are essential tasks in drug discovery. Drugs
that were previously approved can often be removed from the market due to the
occurrence of toxic side effects and off-target interactions. To minimize costs
and mitigate risks, it is crucial to select compounds with desirable molecular
properties that can reduce chemical toxicity and decrease the risk of adverse
drug reactions. Computational methods identify potential issues before clinical
trials, saving time, resources and providing more efficient and safe treatments
for patients. In particular, deep learning (DL) methods learn generalizable and
transferable representations to model non-linear systems of toxicity and side
effect prediction, which can improve the accuracy and efficiency of drug discov-
ery efforts [1, 2]. However, due to the limited amount of labeled information
available in a large chemical space, DL models struggle to generalize to new
toxicity and side effect properties. Thus, finding ways to effectively learn from
a small number of labeled molecules remains a key challenge in drug discovery
[3]. In this paper, we propose a few-shot GNN-based convolutional Transformer,

∗This work is funded by the FCT - Foundation for Science and Technology, I.P./MCTES
through national funds (PIDDAC), within the scope of CISUC R&D Unit.

23

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.

https://github.com/larngroup/FS-GNNCvTR


FS-GNNCvTR to predict toxicity and drug side effects with a small amount of
labeled molecules. FS-GNNCvTR leverages the hierarchical structure of convo-
lutional architectures to learn both local and global connections in graph embed-
dings at varying levels of complexity. Small data collections, Tox21 and SIDER
[4], with high-level molecular property measurements are considered for toxicity
and side effect prediction. To address the problem of low-data, we propose a two-
module meta-learning framework to iteratively update model parameters across
few-shot tasks with limited available data. Few-shot experiments demonstrate
the superior performance of FS-GNNCvTR over standard graph-based methods.

2 Methods

2.1 Graph Neural Network Module

Molecules can be described by molecular graphs G = (V,E), where V is the set
of nodes v (atoms) and E is the set of edges e (chemical bonds). An edge is
defined by e = (v, u), where v and u are nodes connected in a neighborhood
N(v). In this work, a graph isomorphism network (GIN) with LGIN = 5 layers
is used to iteratively aggregate node embeddings hl

v at message-passing layers
l and compute graph embeddings hG. The GIN performs AGGREGATE and
COMBINE steps as a sum of node and edge features. An UPDATE step applies
a multi-layer perceptron MLP followed by non-linear activation σ = ReLU .

hl
v = ReLU(MLP l(

∑

u∈N(v)∪v

hl−1
u +

∑

e=(v,u):u∈N(v)∪v

hl−1
e )). (1)

A READOUT operation pools node embeddings to obtain a graph embedding
hG by averaging node embeddings hv (mean-pooling) at the final layer, hG =
mean({hL

v : v ∈ V }). Input node and edge features (h0
v, h

0
e) are described by

atom and bond attributes including atom number (AN), atom chirality (AC)
with h0

v = {vAN , vAC}, and bond type (BT), bond direction (BD) with h0
e =

{eBT , eBD}. Pre-trained models of Hu et al. (2019) [5] are used to pre-train the
model. The proposed model architecture is depicted in Figure 1. 1

2.2 Convolutional Transformer Module

In this section, we investigate how to combine Transformers [6] and GNNs to
capture the local spatial context and global information in molecular graph em-
beddings hG. Inspired by the work of Wu et al. (2021) [7], we adapt a con-
volutional vision Transformer divided in Li = 3 different steps as an efficient
hierarchical structure for toxicity and side effect prediction. In this study, a

1In this figure, the nodes being operated on are shown in blue, while neighboring nodes
are displayed in black. Blue and white squares represent node and graph embeddings hv and
hG. For AGGREGATE, COMBINE, and UPDATE steps, graph operations are performed
simultaneously on all nodes v ∈ V . We consider graph operations for LGIN = 5 GIN layers,
and a READOUT mean-pooling operation is performed at the final layer. The convolutional
Transformer computes deep representations hT using graph embeddings hG of size 300.
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Fig. 1: Graphical depiction of the proposed GNN-Transformer, FS-GNNCvTR

convolutional Transformer converts graph embeddings hG into a sequence of
patches p(hG) = [x1

p, x
2
p, ..., x

N
p ] where xk

p is the k-th patch vector with N the
number of patches. For each step i, a convolutional embedding layer performs a
convolution operation on a sequence of patches p to compute token embeddings
hT as the input tokens for a convolutional projection. Formally, we learn a func-
tion fconv that converts patch tokens or 1D token sequences from the previous
Transformer step i − 1, hi−1

T ∈ R
Pi−1×1×Ci−1 with size Pi−1 and channel size

Ci−1 into a new 1D token sequence fconv(h
i−1
T ). The function fconv is a convo-

lution operation with a kernel size s, output size o, stride s− o and padding size
k. The new token sequence hi

T has size Pi = [Pi−1+2k−s

s−o
+ 1] and followed by

layer normalization (LN), reducing the number of tokens and increasing feature
complexity across Transformer layers. Transformer blocks propagate token em-
beddings hT across multi-head self-attention (MSA) layers which take queries,
keys, and values (q, k, v) stacked into matrices (Q,K, V ). Here, we consider
multiple projection heads H in MSA and the attention scores are given by

MSA(Q,K, V ) = CONCAT (head1, ..., headH)W (2)

headj = Attention(Q,K, V ) = softmax(
QW

Q
j (KWK

j )T
√
d

)VWV
j (3)

with (WQ
j ,WK

j ,WV
j ) the projection matrices of (Q,K, V ) and d the Transformer

dimension for each head j. The convolutional projection is applied using a
depth-wise separable convolution formulated by hi∗

T = Conv(hi
T , s) where hi∗

T

are the input tokens for Q, K and V matrices at step i, s is the kernel size,
and hi

T are the input tokens for the convolutional projection followed by batch
normalization and a point-wise convolution operation. Finally, a cls token at
the last Transformer step summarizes the information captured by hT is applied
to a MLP followed by sigmoid activation to predict a molecular property label
(condensed in a value ∈ {0, 1}).
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2.3 Two-Module Meta-Learning Framework

In this study, we propose two-module meta-learning framework consisting of: a
graph neural network (GNN) module and a convolutional Transformer (CvTR)
module (see Figure 2). Both modules are trained to update model parameters
across few-shot tasks (meta-training) using a task-specific support set for train-
ing and a disjoint query set for evaluation. The updated parameters are used to
generalize to new representations in the test data (meta-testing). In this case, we
focus on predicting the chemical toxicity and adverse side effects on Tox21 and
SIDER datasets, so that {fθ(G), gθ∗(hG)} : M ⇒ {0, 1} ∈ Y , where M is the
space of all molecular graph structures G, hG are the output graph embeddings
from a GNN fθ, gθ∗ is the Convolutional Transformer (CvTR), and Y is the
toxicity or side effect property labels. A GIN fθ with model parameters θ and a
Convolutional Transformer gθ∗ with parameters θ∗ are trained across few-shot
tasks t ∈ {1..., T}. For each task, meta-models fθ and gθ∗ are trained on a task-
specific support set St of molecular graphs GSti

and evaluated on a query set Qt

of molecular graphs GQti
. In meta-training, a support set of size k is randomly

sampled to serve as an input to the GNN-Transformer and compute the support
losses LGNN

t , LCvTR
t for each task t ∈ {1..., ntrain}. Support losses are then used

to iteratively update model parameters θ → θ′, θ∗ → θ∗
′

. Both meta-models
compute the query losses LGNN ′

t ,LCvTR′

t using the remaining n samples for that
task. In meta-training, to update model parameters, we apply a few gradient
steps, θt = θ − α▽θLGNN

t (θ) and θ∗t = θ∗ − α∗
▽θ∗LCvTR

t (θ∗) where α and α∗

are the size of the steps for the gradient descent updates. In meta-testing, a
support set of k examples is randomly sampled for a new test task to update
model parameters θ → θ′, θ∗ → θ∗

′

for each task t ∈ {ntrain+1..., T}. Then, we
evaluate both meta-models on a new query set using the remaining n samples, to
predict the toxicity and side effect properties with just a few labeled molecules.
The loss for both models, LGNN and LCvTR is a binary cross-entropy loss. To

Fig. 2: Few-shot meta-learning framework for toxicity and side effect prediction
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address class imbalance, we use a weighted binary cross-entropy loss to assign a
higher penalty to failed predictions on the minority class by defining a weight c,

L = −1

k

k∑

i=1

c yi log(y
′

i) + (1− yi) log(1− y′i) (4)

where y′ are the predictions and y are the molecular property labels with k

representing the number of samples. A value of c = 25 was effective for Tox21,
while a value of c = 1 was more effective for SIDER due to task variability.

2.4 Details of Model Training and Implementation

Models were implemented using PyTorch version 1.10.1 with CUDA version
11.3 and Python 3.7. RDKit libraries are used to compute the molecular graph
features including atom-type, atom chirality, bond type and bond direction in a
given compound. These attributes formed the initial set of molecular features fed
into GNN layers. Models were trained across (ntrain× epochs) training episodes
with ntrain number of training tasks and epochs the total number of epochs.
In general, models stopped improving significantly after 1000 epochs. In this
study, our primary focus was not on hyper-parameter optimization, particularly
for GNN baselines. Consequently, we did not put extensive effort in fine-tuning
model hyper-parameters, leaving it for future research. Specifically, we used a
learning rate of 1e−5 and an update step of 5 for training and 10 for testing.

3 Results and Conclusion

In this work, we evaluated the binary classification across few-shots tasks for
toxicity and side effect prediction on Tox21 and SIDER [4]. Tox21 includes the
screening results for 12 different toxic effects in 7831 molecules. Here, we con-
sider a train-test split with 9 tasks for meta-training and 3 for meta-testing.
SIDER is a compound database that includes information on the potential side
effects of 1427 molecules on 27 different organ classes. Here, information is di-
vided in 21 tasks for meta-training and 6 for meta-testing. ROC-AUC scores are
evaluated on the query set of each test task. For each few-shot task, we sample
a random support set that includes a set of positive samples k+ and a set of
negative samples k− for training. The remaining datapoints of that task form
the query set for evaluation. Here, we conduct 5-shot and 10-shot experiments
with random support sets of size (k+, k−), with k = 5 and k = 10, respectively.
Each experiment is repeated 30 times, using different random support sets each
time. In Table 1, we present the mean and standard deviation of ROC-AUC
scores for 5-shot and 10-shot experiments with 30 random support sets. ROC-
AUC results reported show a superior performance of the proposed model over
other graph-based methods (GCN, GraphSAGE and GIN) and more robust re-
sults with a smaller variance across few-shot tasks. Ultimately, we posit that the
FS-GNNCvTR model combines the strengths of both GNNs and convolutional
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Transformers to capture both local and global information of molecular embed-
dings and improve the process of drug discovery through the accurate prediction
of toxicity and side effect properties with a small amount of labeled molecules.

Dataset Task GIN GCN GraphSAGE
FS-GNNCvTR
(GIN+CvTR)

△(AUC)

5-shot (5+, 5−)

Tox21

SR-HSE 0.612± 0.009 0.661± 0.019 0.651± 0.039 0.778± 0.002 +0.117
SR-MMP 0.578± 0.009 0.657± 0.015 0.667± 0.032 0.796± 0.001 +0.129
SR-p53 0.590± 0.011 0.621± 0.015 0.644± 0.025 0.740± 0.002 +0.096
Average 0.593 0.646 0.654 0.771 +0.117

SIDER

R.U.D. 0.697± 0.012 0.609± 0.011 0.630± 0.009 0.715± 0.002 +0.018
P.P.P.C. 0.769± 0.006 0.719± 0.014 0.723± 0.012 0.738± 0.003 −0.031
E.L.D. 0.703± 0.007 0.631± 0.014 0.648± 0.008 0.723± 0.002 +0.020
C.D. 0.683± 0.010 0.607± 0.013 0.628± 0.012 0.729± 0.002 +0.046

N.S.D. 0.650± 0.008 0.585± 0.021 0.596± 0.011 0.672± 0.005 +0.022
I.P.P.C. 0.731± 0.011 0.658± 0.015 0.677± 0.012 0.738± 0.002 +0.007
Average 0.706 0.635 0.650 0.719 +0.013

10-shot (10+, 10−)

Tox21

SR-HSE 0.655± 0.013 0.652± 0.021 0.668± 0.023 0.784± 0.002 +0.116
SR-MMP 0.626± 0.014 0.651± 0.014 0.691± 0.016 0.801± 0.001 +0.110
SR-p53 0.629± 0.010 0.633± 0.013 0.651± 0.014 0.741± 0.003 +0.090
Average 0.637 0.652 0.670 0.775 +0.105

SIDER

R.U.D. 0.691± 0.004 0.600± 0.006 0.637± 0.006 0.712± 0.002 +0.021
P.P.P.C. 0.780± 0.008 0.716± 0.015 0.735± 0.009 0.725± 0.004 −0.055
E.L.D. 0.709± 0.004 0.617± 0.009 0.645± 0.007 0.723± 0.003 +0.014
C.D. 0.676± 0.008 0.589± 0.012 0.633± 0.008 0.732± 0.002 +0.056

N.S.D. 0.660± 0.009 0.577± 0.016 0.593± 0.016 0.674± 0.006 +0.014
I.P.P.C. 0.738± 0.009 0.639± 0.016 0.687± 0.010 0.734± 0.002 −0.004
Average 0.709 0.623 0.655 0.717 +0.008

Table 1: Average ROC-AUC scores obtained across 30 experiments with support
sets of size (5+, 5−) (5-shot) and (10+, 10−) (10-shot) on Tox21 and SIDER
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