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1- University of Namur - NaDI - Faculty of Computer Science - PReCISE
Rue Grandgagnage 21, 5000 Namur - Belgium

2- IDLab-AIRO – Ghent University – imec
Technologiepark-Zwijnaarde 126, 9052 Ghent - Belgium

Abstract. Research in natural language processing has led to the cre-
ation of powerful tools for individuals, companies... However, these suc-
cesses for written languages have not yet affected signed languages (SLs)
to the same extent. The creation of similar tools for signed languages
would benefit deaf, hard of hearing, and hearing people by making SL
content, learning, and communication more accessible for everyone. SL
recognition and translation are related to AI, but require collaboration
with linguists and stakeholders. This paper describes related challenges
from an AI researcher’s point of view and summarizes the state of the art
in these domains.

1 Introduction

Signed languages (SLs) are the primary means of communication for many deaf
and hard-of-hearing (DHH) people. They are natural languages that evolve in
SL communities. Thus, there is no such thing as a unified SL. Instead, there are
multiple languages and dialects, just like spoken languages.

In the past few years, we have seen extraordinary progress in natural lan-
guage processing (NLP). Nowadays, it is easy to find automatic translators for
many spoken languages, such as DeepL1 and Google Translate2. It has become
common practice to rely on grammar or spell checkers when writing. More re-
cently, so-called large language models paved the way to even more powerful
tools, the most well-known of which is probably ChatGPT3. In contrast, SL
recognition (SLR) and translation (SLT) are still in their infancy and tools such
as DeepL, let alone ChatGPT, do not exist for SLs. This work explains the
specificities of SLs to a technical audience willing to tackle the problem of SLR
or SLT. It also provides some necessary historical and ethical context.

From a technological perspective, applying the recent advances in artificial
intelligence (AI) to SLs would allow the creation of several applications for SL
users. Perhaps the “holy grail” of sign language technology, is a sign language
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1https://www.deepl.com/en/translator
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3https://chat.openai.com/
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translation app that could be used to facilitate communication between hearing
and DHH people. Other possible applications of such technology include learning
tools or online SL dictionaries.

There is a historical issue of hearing people making decisions on behalf of
DHH people, related to the concept of “audism” [1]. Instead, it is more ethical
to communicate with SL users and ask them what technologies they want or
not. For instance, there is some resistance against SL avatars [2, 3, 4]. Recent
research projects such as SignON [5] and EASIER [6] aim to enable communica-
tion between researchers in AI, who are often hearing, SL linguists, and the end
users of potential SL applications. They present a “co-creation” pipeline, that
aims to continuously involve DHH and hearing end users in the design and de-
velopment of technology. As such, the hope is to converge on useful and desired
applications.

This work aims to be a good starting point for new researchers in the field.
Section 2 presents a high-level overview of available datasets and their properties.
Next, Section 3 shows the state of the art in SLR and SLT. The papers of this
special session are listed in Section 4. Finally, Section 5 offers a conclusion that
summarizes the remaining challenges and gives perspective on future work.

2 Sign Language Data

The advances in NLP are powered by DL and large amounts of data. Lack of
data is the main reason why SLR and SLT do not witness the same progress
as speech and text. While there are large amounts of SL data available, they
originate from various sources (Section 2.1) and often are only partly annotated,
with annotation conventions differing (Section 2.2). Challenges related to the
collection, organization, and annotation of these data are major roadblocks on
the way toward SL applications [7].

2.1 Data Sources

SL data can be found “in the wild”, on social media and video-sharing platforms
where SL communities gather to share vocabularies or vlogs [8, 9]. Other sources
from which existing SL data can be collected are television broadcasts [10, 11].

There has also been a multitude of targeted SL data collection efforts, the
first of which was by SL linguists who wanted to study specific SLs [12, 13, 14].
The success of DL in related fields has also led to the collection of SL datasets
specifically for use in DL [15, 16].

The data’s source has an influence on the signing quality. For example, news
broadcasts are typically interpreted directly from auto-cue or speech, leading to
information loss or non-spontaneous signing. Some datasets were collected by
instructing people to record specific signs. Signers tend to sign less naturally
when instructed to sign specific sentences. The data source could also introduce
representative bias if the number of signers involved in the dataset is too low
but also vocabulary bias depending on the task performed by the signers. For
instance, the PHOENIX-weather dataset is based on German weather forecasts,
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Name Data source Annotations Type
ASL [17] SL lexicon G I
ASL-LEX [18] SL lexicon P I
BOBSL [19] TV broadcast G, S I, C
BeCoS [11] TV broadcast S C
LSFB [20, 21] SL corpus G, S I, C
MS-ASL [9] YouTube G I
PHOENIX [10] TV broadcast S C
VGT-Corpus [14] SL corpus G, S I, C
NGT-Corpus [13] SL corpus G, S I, C
LSA64 [15] DL dataset G I
Google ASL [16] DL dataset G I

Table 1: This table shows a non-exhaustive list of existing SL datasets, illus-
trating their variety (both on the data and annotation level). G: Glosses, P:
Phonemes, S: Sentences. I: Isolated, C: Continuous.

thus the vocabulary is more specific than other datasets. It is important to
choose the correct dataset for the task and to take into consideration the bias of
the used dataset [3]. Table 1 provides a list of some existing SL datasets with
some of their characteristics.

2.2 Dataset Annotations

SL datasets have either pre-existing annotations or are annotated in varying
ways. There is no consensus about how to annotate SL data. Several conventions
co-exist [7]. The main ones are:

• Phonology, e.g., [18]: Each video is annotated using the smallest compo-
nent of sign movement called phonemes. However, this kind of annotation
is time-consuming and the exhaustive list of SL phonemes is still discussed
among SL linguists.

• Gloss, e.g., [12, 13, 16]: Every sign is associated with a unique written
indicator of its meaning called a gloss. It is the most popular annotation
method. Annotation is also time-consuming and it requires domain experts
to associate each sign with the correct unique gloss.

• Utterances, e.g., [13, 14, 22]: Each segment of the video is associated
with its translation into a written language [22]. This form of annotation
is perhaps the least time-consuming of the three mentioned here.

Other annotation methods are also investigated to better represent how
speech is structured in SL [23].

Regardless of the methods selected, the annotation process is the main bot-
tleneck when creating SL datasets as it is a slow process requiring a highly
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Fig. 1: The ISLR, CSLR, and SLT tasks.

specific skillset. Developing methods for SL recognition could ease this process
and create a positive feedback loop.

Despite those standards, every dataset tends to use its own annotation stan-
dards. For instance, the NGT corpus [24] contains two kinds of translation
annotations: free and narrow, whereas the VGT corpus only contains a single
translation annotation. Despite both corpora being annotated with glosses based
on Dutch, conventions on how to annotate concepts like numbers, uncertainties
or repetitions differ. Quite some effort can be required to go through the annota-
tion conventions of specific datasets, especially SL corpora, and some linguistic
background knowledge may be required to understand these conventions.

3 Sign Language Technology

The umbrella term “SL technology” covers, among others, isolated SLR (ISLR),
continuous SLR (CSLR) and SLT. These tasks, illustrated in Figure ??, each
have their own target applications and requirements and they all require pro-
cessing an SL input signal.

3.1 Input Signal

Signers use visual and spatial information to construct utterances. Thus, video
is a natural choice to represent SL data. The signal-to-noise ratio of video-
recorded signing is problematic, as these videos contain irrelevant information
such as skin color or variable background and lighting. Therefore, pre-processing
is often applied to video data to extract relevant features.

An early work extracted 8 features about the hand of the signers in SL videos
to train a Hidden Markov Model [25]. The results were encouraging but it was
clear that the number of features captured was too low to discriminate an entire
SL vocabulary. To ease pre-processing SL data, some researchers make signers
wear colored gloves [15] or gloves with sensors [26]. Despite encouraging results,
relying on such hardware is unnatural and intrusive for the user [27]. Some works
also rely on 3D camera recordings such as Microsoft’s Kinect to help track the
hands [28] but few devices are equipped with such cameras making the system
less accessible.
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Authors Year Vocab. Signers Top-1 Method
Albanie et al. [22] 2020 1000 40 65.57% I3D
Du et al. [37] 2022 1000 40 72.4% Transformers
Liao et al. [38] 2019 500 8 89.8% CNN + LSTM
Liao et al. [38] 2019 500 8 89.8% CNN + LSTM

Table 2: This table summarizes some recent results obtained in ISRL with several
architectures on several datasets.

Recently, progress achieved in pose estimation [29, 30] allows to extract land-
marks tracking joints and other keypoints of the signers. This facilitate the
design of tools leveraging off-the-shelf recording devices to recognize sign lan-
guages. However, these pose estimation tools are not always robust and their
errors are propagated to SLR models [31, 32].

The processing of SL video data remains an area of active research.

3.2 Isolated SLR

ISLR models aim to classify videos showing a single sign: it is a many-to-one
classification task. ISLR can be applied to create tools to query dictionaries [33,
34] or help the annotation of datasets [22]. Current ISLR approaches are limited
mainly by data and they typically exclude important constructs such as non-
lexical signs and spatiality [23].

Next to hand shape, movement plays an important role in signing. Typically,
ISLR is tackled by using a spatial (2D) or spatio-temporal (3D) feature extractor
(convolutional neural networks or vision transformers) followed by a sequential
model such as recurrent neural networks or transformers. The feature extrac-
tors are often pre-trained to offset the lack of SL data; for instance, VGG or
ResNet pre-trained on ImageNet [35, 36] or I3D pre-trained on Kinetics [22, 20].
Recently, transformers achieved competitive performance for isolated SLR [36].
Table 2 reports results obtained by some recent works.

3.3 Continuous SLR

In CSLR the goal is to predict all the glosses corresponding to a sequence of signs,
in the correct order. It is a many-to-many classification task. The main addi-
tional challenge compared to ISLR is movement epenthesis, a transient move-
ment occurring between two signs and that could easily be mistaken as a sign.
The applications of CSLR are automatic dataset annotation [22] and using it as
a first step in an SLT pipeline [39].

The models used for CSLR are quite similar to those used for ISLR, but
the difference in approach lies in the optimization objective. CSLR is typically
tackled with a similar approach to automatic speech recognition, i.e., to use
Connectionist Temporal Classification (CTC) [40]. A popular dataset for CSLR
is the RWTH-PHOENIX-Weather 2014T dataset [39]. The Word Error Rate

565

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



Authors Year Dataset WER
Chen et al. [41] 2022 PHOENIX-2014-T 19.3
Zhou et al. [42] 2022 PHOENIX-2014 21.1
Gan et al. [43] 2023 PHOENIX-2014-T 20.1

Table 3: This table summarizes some recent results obtained in CSLR.

(WER) is the most popular metric for this task. Table 3 reports results obtained
by some recent works.

3.4 Sign Language Translation

Whereas SLR is concerned with a single signed language, SLT crosses language
and modality boundaries. Theoretically, one can translate between any signed
and any written language given enough data. This section focuses on translation
from signed to written languages, as this task is related to SLR.

The first step in an SLT pipeline is to extract information and/or semantics
from video data, i.e., SLR. This information, commonly glosses or embeddings,
is then used as input to the actual translation model.

First results for video-based SLT were achieved in 2018 using the RWTH-
PHOENIX-Weather 2014T dataset [39]. Five years later, the BLEU-4 scores—
quantifying the translation quality—have increased from 9.58 to 25.59. This
dataset is rather limited in scope, however. Müller et al. [44] discuss the need for
a standardized evaluation method to better track the progress made in the field.
RWTH-PHOENIX-Weather 2014T only contains 7096 sentence pairs. Achieving
acceptable SLT results on general topics requires larger and more varied datasets.
The recently held WMT-SLT22 challenge [45] provides datasets and a standard-
ized evaluation method. Currently, the scores achieved on this benchmark are
unsatisfactory.

These low scores are likely due to a lack of training data. In typical transla-
tion tasks between pairs of written languages, one would have millions of parallel
sentences; in SLT, a more challenging task, we only have access to thousands [46].
Hence, data collection is crucial to improve performance.

The way signers structure their dialog is also a challenge. Signing relies
heavily on the usage of the 3D signing space to construct a scene or conceptual
objects. Depicting and enacting [23] are also often used instead of lexical signs.
Facial expression can also affect the meaning of a sign or sentence. SLT methods
should adapt to these particularities. To model those particularities, AZee was
proposed as a formal SL grammar [47].

4 Overview of the Papers

This section introduces the five papers accepted in the special session on Machine
Learning Applied to Sign Language.
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Firstly, the paper Large-scale dataset and benchmarking for hand
and face detection focused on sign language of Leandro et al. introduces
a dataset for hand and face segmentation. They evaluate their dataset using
various models for image segmentation. This work could help improve current
pre-processing pipelines.

Two papers investigate the use of multimodal methods for sign language:

• Multimodal Recognition of Valence, Arousal, and Dominance via
Late-Fusion of Text, Audio and Facial Expressions: Nunnari et al.
explore the usage of multimodal channels such as speech, image, and text
to infer the emotion of speech. The detected emotion could be used to
generate a realistic avatar in the context of sign language generation.

• Disambiguating Signs: Deep Learning-based Gloss-level Classi-
fication for German Sign Language by Utilizing Mouth Actions
by Nam Pham et al. evaluates the gain in performance of a multimodal
architecture taking mouth region information into consideration to pre-
dict signs. They find that lip movements convey important information to
discriminate similar signs.

Finally, there are two papers on sign language phonology and how to model
it in an SLR context:

• Exploring Strategies for Modeling Sign Language Phonology by
Kezar et al. explores several learning strategies to create models able to
better model sign language phonemes.

• Exploring the Importance of Sign Language Phonology for a
Deep Neural Network by Martinez et al. investigates if deep neural
networks trained on sign language data have learned phoneme representa-
tion of the language.

5 Conclusion

The field of SLR is still young and constantly evolving. The recent increase in
interest gives reason to hope that, soon, powerful tools will appear. However,
more high-quality data is needed in order to build a system working correctly
when signers sign fluently. The data acquisition and annotation process is the
main bottleneck of the field. Developing methods to speed up the annotation
process or leverage SL video in the wild is a remaining challenge. Also, the
construction of a standard benchmark dataset adopted by the whole research
community would be beneficial to accurately track the progress in the field.

Another challenge is to bring useful tools to SL communities. A majority of
SLR works focuses on creating algorithms for SLR but does not seek to apply
them to solve real-life issues. Such tools must be designed in co-creation with
deaf stakeholders. UX researchers must also be involved in this process. The
creation and deployment of tools matching the community’s needs is a challenge
that could have a big impact on society.
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Finally, current works in SLR and SLT only focus on well-established lexical
signs. However, in free-speech settings, signers may choose to use the productive
lexicon to describe complex scenes. Such signs are generally created for the
situation and imitate the scene that is described. Such constructions constitute
an essential part of SL and automated translation of such structures has, to the
best of our knowledge, not been tackled yet.
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itar Shterionov, and Horacio Saggion. Challenges with sign language datasets for sign
language recognition and translation. In 13th International Conference on Language
Resources and Evaluation (LREC). European Language Resources Association, 2022.

[8] Dongxu Li, Cristian Rodriguez, Xin Yu, and Hongdong Li. Word-level deep sign language
recognition from video: A new large-scale dataset and methods comparison. In The IEEE
Winter Conference on Applications of Computer Vision, pages 1459–1469, 2020.

[9] Hamid Reza Vaezi Joze and Oscar Koller. Ms-asl: A large-scale data set and benchmark
for understanding american sign language. arXiv preprint arXiv:1812.01053, 2018.

[10] Oscar Koller, Jens Forster, and Hermann Ney. Continuous sign language recognition:
Towards large vocabulary statistical recognition systems handling multiple signers. Com-
puter Vision and Image Understanding, 141:108–125, 2015.

[11] Vincent Vandeghinste, Bob Van Dyck, Mathieu De Coster, Maud Goddefroy, and Joni
Dambre. BeCoS Corpus: Belgian Covid-19 Sign Language Corpus. A Corpus for Training
Sign Language Recognition and Translation. Computational Linguistics in the Nether-
lands Journal, 12:7–17, 2022.

[12] Trevor Johnston. The lexical database of Auslan (Australian Sign Language). Sign
Language & Linguistics, 4(1-2):145–169, December 2001.

[13] Onno A Crasborn and IEP Zwitserlood. The corpus ngt: an online corpus for professionals
and laymen. 2008.

[14] Mieke Van Herreweghe, Myriam Vermeerbergen, Eline Demey, Hannes De Durpel, Hilde
Nyffels, and Sam Verstraete. Het Corpus VGT. Een digitaal open access corpus van videos
and annotaties van Vlaamse Gebarentaal, ontwikkeld aan de Universiteit Gent i.s.m. KU
Leuven. www.corpusvgt.be, 2015.

568

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.

www.corpusvgt.be


[15] Franco Ronchetti, Facundo Quiroga, César Armando Estrebou, Laura Cristina Lanzarini,
and Alejandro Rosete. Lsa64: An argentinian sign language dataset. In XXII Congreso
Argentino de Ciencias de la Computación (CACIC 2016)., 2016.

[16] Ashley Chow, Glenn Cameron, Mark Sherwood, Phil Culliton, Sam Sepah, Sohier Dane,
and Thad Starner. Google - isolated sign language recognition, 2023.

[17] Vassilis Athitsos, Carol Neidle, Stan Sclaroff, Joan Nash, Alexandra Stefan, Quan Yuan,
and Ashwin Thangali. The american sign language lexicon video dataset. In 2008 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops.
IEEE, June 2008.

[18] Zed Sevcikova Sehyr, Naomi Caselli, Ariel M Cohen-Goldberg, and Karen Emmorey. The
ASL-LEX 2.0 project: A database of lexical and phonological properties for 2, 723 signs in
american sign language. The Journal of Deaf Studies and Deaf Education, 26(2):263–277,
February 2021.

[19] Samuel Albanie, Gül Varol, Liliane Momeni, Hannah Bull, Triantafyllos Afouras, Himel
Chowdhury, Neil Fox, Bencie Woll, Rob Cooper, Andrew McParland, and Andrew Zis-
serman. BOBSL: BBC-Oxford British Sign Language Dataset. 2021.
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