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Abstract. The vision transformer (ViT) utilizes a learnable position
embedding (PE) to encode the location of an image patch. However, it
is unclear if this learnable PE is vital and what its benefits are. This pa-
per explores an alternative way of encoding patch locations that exploits
prior knowledge about their spatial arrangement called circle relationship
embedding (CRE). CRE considers the distance of image patches from the
central patch based on the four-neighborhood to simplify the PE. Our
experiments show that combining CRE with PE achieves better perfor-
mance than using PE alone. The code for this paper can be downloaded
at: https://github.com/trieschlab/CRE.

1 Introduction

The Vision Transformer (ViT) applies the self-attention mechanism from state-
of-the-art natural language processing (NLP) systems to image processing [1]. It
retains the advantages of the transformer architecture in NLP systems, captur-
ing global input relationships, parallelizing computations, and achieving perfor-
mance comparable to or even surpassing convolutional neural networks (CNN)
on various computer vision tasks.

Because ViT divides the input image into several patches and needs to model
their global relationships directly, researchers focus on how to efficiently use the
information of each patch to extract the most distinguishing features of different
objects. The standard ViT introduces a positional embedding (PE) to solve this
problem, which turned out to be crucial for vision tasks.

Many recent studies changed the learnable PE, proposed a new method to
calculate the PE, and improved the novel PE by better expressing the location
information of different patches. The random learnable PE parameters are still
challenging to train well [2]. This paper avoids directly changing the PE but
instead explores the hidden relationship between the input patches and generates
the circle relationship embedding (CRE). In CRE, we generate the matrix of
the PE from a learnable vector, which reduces the two-dimensional random
parameter matrix to one dimension. For this, we treat the central patch as the
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center of multiple concentric circles. Patches on the same circle are, by definition,
equidistant from the central patch (Fig. 1).

The circle relationship embedding (CRE) matrix has the same size as the
original PE. We can use the CRE to augment the original PE or replace it. The
advantage of combining CRE and PE is that we can add information on patch
relationships to the input without modifying the traditional ViT structure; if
we replace PE with CRE, the learnable matrix reduces to a learnable vector.
We thus compress the number of learnable parameters. Importantly, the effect
of adding CRE on the training speed is negligible. Here we assess CRE on
four public datasets. The results show that CRE is effective and provide novel
insights into analyzing the PE in vision transformers.
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Fig. 1: Different embeddings and structure of the updated ViT. Green circles
pass through centers of patches at the same distance from the image center. Yel-
low squares indicate center patches. Orange patches indicate nearest neighbors
of the center patches. We use 3 × 3 patches and 4 × 4 patches as examples to
represent cases where the number of patches is odd or even, respectively.

2 Related Work

The ViT treats different patches equally, but in fact, the positional relationship
of different patches is not the same, so the introduction of PE helps to improve
ViT performance. The following discusses four types of PE.

Learnable absolute PE. This PE is proposed by ViT [1] and is also the
most widely used PE method. They set a random matrix of fixed dimensions and
combined it with the patches. The optimizer and ViT parameters are updated
synchronously, and the location information of different patches is added to the
embeddings.

Learnable relative PE. Swin [3] is a representative of a learnable relative
PE. It uses the relative distance between patches to encode position information,
and the relative PE uses one-dimensional relative attention. In contrast, in CRE
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the information is encoded according to the distance between the central patch
and other patches.

Fixed PE. Fixed PE uses fixed absolute value coding to represent the po-
sitions of different patches. For example, [4] uses sine and cosine functions for
the PE and connects the coding information of different frequencies to form the
final PE.

Other PEs. In addition to the above three types of PE, this group includes
PE by using convolutional space invariance [5] or using a continuous dynamic
model [6].

Compared to the above methods, we propose CRE to extract the relationship
between patches as a supplement to the PE. The size of the CRE is consistent
with the PE, so we can combine the CRE with PE to add more information to
the latent code or replace PE. Also, the number of learnable parameters of the
CRE is smaller than that of the PE.

3 Circle relationship embedding

Here we present the CRE in detail. We first consider the form of the conventional
PE matrix. Assuming N patches and the dimension of the PE for each patch
being D, then PE ∈ RN×D. We can write the learnable position embedding
matrix as:

PE =

 p0,0 · · · p0,D−1

...
. . .

...
pN−1,0 · · · pN−1,D−1


N×D

, (1)

where pi,j is the learnable position embedding element j of patch i.
In contrast, for CRE the embedding matrix is computed as the outer product

of a vector containing the distances of all patches to a central patch and a
learnable parameter vector:

CREN×D = dN×1 ×CRC1×D , (2)

where d is the N -dimensional distance vector and CRC is the D-dimensional
learnable parameter vector.

Figure. 1A stands for the input image splitting in ViT. Figure. 1B illustrates
the distances between central patches and others via green circles. Patches on
the same circle have, by definition, the same distance from the center.

Figure 1C shows how the CRE is incorporated into the ViT. It can be seen
that we can combine or replace PE with CRE because they have the same
dimension. Compared to PE, CRE has fewer learnable parameters and is easy
to calculate.

We first need to calculate the CRE for the central patch (CRC) and then
evaluate the distance between the central patch and other patches.

CRCodd =
[
pN−1

2 ,0 · · · pN−1
2 ,D−1

]
1×D

(3)
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and

CRCeven =


pN

2 −
√

N
2 −1,0

· · · pN
2 −

√
N
2 −1,D−1

pN
2 −

√
N
2 ,0

· · · pN
2 −

√
N
2 ,D−1

pN
2 +

√
N
2 −1,0

· · · pN
2 +

√
N
2 −1,D−1

pN
2 +

√
N
2 ,0

· · · pN
2 +

√
N
2 ,D−1


4×D

, (4)

where CRCodd and CRCeven refer to the CRC from an odd number of patches
and an even number of patches, respectively.

Here we consider N ≥ 9 and have an integer square root. If N is odd, we
only have one central patch, whereas we have four central patches if N is even.
From Eq. 3 and Eq. 4, we can calculate the index of the central patch based on
N . Each vector here is learnable, and for CRCeven, the 4 vectors are the same,
whereas the index of the patches is different. So the dimension of the learnable
vector could also be 1×D and broadcast as 4×D.

Before evaluating the distance between patches, we need to calculate the
index of the adjacent patches concerning the central patch.

If the number of patches is odd, we set the center of the circle on the central
patch, then consider that the 4-neighbors have the same distances from the
central patch. We set one of these neighbors as a new central patch and use the
4-neighbors principle to find the patches that have not yet been traversed. It
is considered that all the newly traversed patches are consistent with the initial
center patch distance, and the distance is larger than the four patches traversed
for the first time. If the index of the central patch is N−1

2 , the indices of its 4
neighbors are:

Ineighbors =

 N−1
2 −

√
N

N−1
2 − 1 N−1

2
N−1
2 + 1

N−1
2 +

√
N

 (5)

Now we can evaluate the distance after getting the index. Assume the distance
between these 4-neighbors and the center patch is d, then we calculate the next
neighbors based on the new four indices, repeat and set the new distance as√
2d. So the number of d is

∑
i=3,··· ,

√
N

i+1
2 . If the number of patches is even,

we consider the center of the circle to be in the four central patches, the distance
of these patches is 1, and the number of distances is

∑
i=4,··· ,

√
N

i
2 . The d is

dodd = [d∑
i=3,··· ,

√
N

i+1
2
, · · · , d0, · · · , d0, 1, d0, · · · , d0, · · · , d∑

i=3,··· ,
√

N
i+1
2
]TN×1

(6)
and

deven = [d∑
i=4,··· ,

√
N

i
2
, · · · , d0, · · · , 1, 1, · · · , 1, 1, · · · , d0, d∑

i=4,··· ,
√

N
i
2
]TN×1 ,

(7)
where d can be a hyperparameter or a fixed number. We use Euclidean dis-
tance and enlarge the original vector to calculate the distance vector: d9 =
[
√
2, 1,

√
2, 1, 0, 1,

√
2, 1,

√
2]T ×

√
2 = [2,

√
2, 2,

√
2, 0,

√
2, 2,

√
2, 2]T .
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Note that the element in d cannot be zero because we need to calculate CRE
for every patch, so we set the central element in dodd as one, ensuring that the
CRE of the central patch after matrix multiplication is not a zero vector. For the
nine patches and sixteen patches from Fig. 1B, the distance vectors are defined as
d9 = [2,

√
2, 2,

√
2, 1,

√
2, 2,

√
2, 2]T and d16 = [2,

√
2,
√
2, 2,

√
2, 1, 1,

√
2,
√
2, 1, 1,√

2, 2,
√
2,
√
2, 2]T .

4 Experiments

Method CIFAR10 CIFAR100 T-ImageNet Flowers102
ViT-Base (µ± σ)

PE 95.54±1.02 76.13±1.20 54.92±1.65 85.71±1.33
CRE 96.26±0.64 77.19±1.42 55.34±1.54 86.44±0.41
CRE+PE 96.29±0.85 77.33±1.34 55.40±1.58 86.83±0.59

T2T-Base (µ± σ)
PE 96.70±0.16 79.25±0.87 57.66±1.44 88.14±1.31
CRE 96.99±0.64 79.81±1.22 57.93±1.79 88.37±0.62
CRE+PE 97.51±0.86 80.28±1.53 58.59±1.71 88.71±0.37

Swin-Base (µ± σ)
PE 96.80±1.21 79.77±1.37 58.51±1.82 89.44±0.79
CRE 97.25±0.97 80.15±1.68 59.28±1.75 89.74±1.44
CRE+PE 97.81±0.27 80.44±1.08 59.83±1.87 89.98±0.36

Table 1: Top-1 accuracy comparison on different datasets

We chose four popular datasets (CIFAR10, CIFAR100 [7], Tiny-ImageNet
[8], and Flowers102 [9]) to evaluate our method. We assign 60 % as the trainset,
30 % as validation, and the other for the test. Each experiment trained for
400 epochs. The batch size is 128, and we use AdamW as the optimizer. Our
experiments use these relatively small datasets and batch sizes to allow us to
train our models using a single GPU (Nvidia GeForce Titan X). The initial
learning rate was 0.001 and we used a cosine decay of the learning rate. Each
reported result is shown as mean ± std across five runs.

To evaluate the robustness of CRE, we test it with three different ViT struc-
tures. Here, ViT-Base, T2T-Base, and Swin-Base mean ViT-B/16 [1], T2T-ViT-
14 [10], and Swin-T [3]. PE is the learnable absolute PE in Sec. 2, and CRE+PE
means matrix addition. We treat PE as the baseline to compare our method.
Considering the results in Tab. 1, we can draw several conclusions.

1) CRE can directly replace or combine with PE in the three ViT backbones
because they use the same matrix dimension for the position embedding.

2) We observe marginally improved ViT performance for CRE compared to
PE on all datasets. We hypothesize that this is due to the additional induc-
tive bias of CRE, which focuses on relative patch location, while PE only pays
attention to the absolute location of patches.
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3) The combination of both consistently outperforms just using PE or CRE
alone. This suggests that CRE is complementary to PE.

5 Conclusion

In this work, we introduce the circle relationship embedding (CRE) to represent
the relationship between patches and the central patch in Vision Transformer
(ViT) architectures. We construct the CRE by multiplying a distance vector
with a learnable vector, reducing the learnable parameters compared to conven-
tional position embedding (PE). CRE can replace or combine with PE. When
combined, it outperforms using PE alone. However, CRE still needs to be ana-
lyzed from more perspectives, such as training speed, latent representation, and
visualization, and it also needs more ViT backbones and datasets to evaluate
performance. Exploring these issues will help us better understand the effects
of different types of PE in ViT models.
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