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Abstract. Feature selection is a popular preprocessing step to reduce
the dimensionality of the data while preserving the important information.
In this paper we propose an efficient and green feature selection method
based on information theory, with the novelty of using the logarithmic
division and resort to fixed-point precision. The results of experiments
conducted on several datasets indicate the potential of our proposal, as
it does not incur in significant information loss compared to the standard
method, both in the features selected and in the subsequent classification
step. This finding opens up possibilities for a new family of green feature
selection methods, which would help to minimize energy consumption and
carbon emissions.

1 Introduction

Artificial intelligence has achieved numerous advances in recent years. These are
primarily due to the increase in computing power, the development of new algo-
rithms and the emergence of big data. The latter has not only provided machine
learning with a wealth of opportunities but has also significantly increased the
dimensionality of data. Feature selection addresses this problem by selecting the
relevant features from the data while discarding irrelevant or redundant ones [1].

Problems with high dimensionality are becoming commonplace in many envi-
ronments, such as bioinformatics, where it is essential to identify the biomolecules
that explain a particular phenotype [2]. This process enables a more straightfor-
ward and coherent explanation. However, feature selection often faces scalability
problems, which limit its effectiveness. Due to the combinatorial nature of fea-
ture selection, having an extensive feature space can significantly impact its per-
formance. Therefore, it is necessary to develop improvements to cope with the
ever-increasing volume of data. Many of today’s state-of-the-art improvements
rely on high-performance computing, which requires significant computational
resources and results in considerable energy consumption. However, the increas-
ing number of Internet of Things (IoT) devices has led to the emergence of trends
like Edge Computing [3], which aims to run algorithms at the end nodes of the
network. Thus, Edge Computing can reduce data transfer and eliminate the need
for supercomputers or cloud servers. Given the memory and energy limitations
of IoT devices and the desire to obtain greener and more efficient algorithms,
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some approaches in the field of neural networks aim to achieve this through
quantization. As an efficient and underexplored alternative for feature selection,
fixed-point representation is being proposed. For instance, a fixed-point 32-bit
integer adder consumes nine times less energy than a single-precision floating-
point adder [4]. In a previous work [5], we conducted a detailed study of the
impact of precision loss on filter-type feature selection methods. The selection
of these methods was based on their low computational cost. Specifically, the
study narrowed down its focus to filter-type methods that employ metrics based
on Information Theory due to its wide range of applications. In this paper, we
propose a more realistic implementation of the chosen information theory-based
methods. Thanks to this new approach, it becomes feasible to obtain more re-
alistic measurements, which facilitates a more comprehensive analysis. As part
of this, we also modify the computation of low-precision Mutual Information
(MI) metric, which is utilized by several feature selection methods and thus
encourages the implementation of new ones that will operate with low-precision.

Since modern algorithms involve complex arithmetic operations, optimizing
these operations is critical. Division is very costly in terms of clock cycles and,
hence, energy. In this context, logarithmic division is proposed as a promis-
ing approach to achieve more energy-efficient algorithms that can cope with the
limitations of IoT devices. Although the conversion to the logarithmic scale
presents some challenges, it is well documented that using the logarithmic num-
ber system can significantly improve time and energy consumption, particularly
in applications where multiplications and divisions are common [6]. To date, the
application of the logarithmic numeric system in feature selection has not been
explored. Similarly to the use of low-precision, there is a growing tendency to
utilize logarithmic division as a means of conserving time and memory in neural
networks. This is why, we propose the use of logarithmic division for feature
selection algorithms implemented in fixed-point to improve their efficiency.

In this work, we present the implementation of feature selection methods that
employ fixed-point representation and logarithmic division to enhance energy,
time and memory efficiency. A study will be conducted to analyze the loss of
information resulting from the use of these approximations. Furthermore, the
implementation of the low-precision Mutual Information metric enables its usage
in other applications that rely on this metric.

2 Proposed methodology

To conduct this study, filter-type methods, which perform feature selection in-
dependently of the induction phase and have low computational cost, have been
chosen. In addition, these methods reduce the dependence on the decided clas-
sifier. Within the group of filter-type methods, we have selected those based on
the Mutual Information metric and narrowed it down to two: Mutual Informa-
tion Maximization (MIM) and Joint Mutual Information Maximization (JMI)
[7]. MIM has been selected for its simplicity, while JMI has been chosen for
being a good trade-off between stability and accuracy [7].
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In order to carry out the experimental process, the first step is to adapt the
methods to work with fixed-point arithmetic. Fixed-point numbers are integers
scaled by a constant factor, with a fixed number of digits in the fractional part.
As stated earlier, fixed-point usage can lead to large energy savings as well as
enable the operation of these algorithms in IoT devices and, therefore, their ap-
plication to Edge Computing. Simultaneously, this approach improves security
as it obviates the need to send all data to the cloud. For further study, we opted
for a more realistic implementation based on the one provided by Meurant [8]
for the Matlab tool, but some modifications have been introduced, including the
addition of logarithmic division. Regarding the division, Mitchell’s algorithm
has been chosen, since it is known for its efficiency in terms of energy consump-
tion, silicon area and time [9]. This, together with the simple implementation
of this algorithm using fixed-point representation, makes it a promising option
for obtaining even more energy-efficient feature selection methods.

Following the modification of the feature selection algorithms, we designed a
two-phase experimental process, using the double-precision results as a baseline:

1. Comparison of the rankings obtained by the low-precision feature selection
methods against the baseline. We use the True Positive Rate (TPR) to
measure similarity. However, unlike the TPR used in classification, we
define it as follows: TPR = TP

n , where TP represents the number of
shared features between the two rankings and n denotes the ranking size.

2. Study of the results obtained in a subsequent classification step for the
k-nearest neighbour classifier (k-NN), with a value of k = 3, a commonly
used value in the literature. This classifier was chosen due to its minimal
assumptions about the data. To estimate the error rate, we performed 3x5-
fold cross-validation, which involved conducting both the feature selection
and classification steps within a single cross-validation loop.

Based on the results of our previous work [5], which established that the size
of the fractional part is the primary consideration when selecting representations
for the experimental process, a fractional part size of 75% has been selected for
the 32-bit, 16-bit, 8-bit and 4-bit representations. Consequently, this results in
fractional part sizes of 24, 12, 6, and 3 bits. These experiments were conducted
in a Matlab2022a and Weka 3.8.6 environment.

3 Experimental results

For the experimental process, four datasets have been selected, consisting of
two datasets acquired via wearable devices and two microarrays. The microar-
ray datasets are challenging because of their small sample size compared to a
large number of features. Table 1 displays the primary characteristics of these
datasets. It is important to note that as MIM and JMI are ranker methods, it is
necessary to manually set a threshold for the number of relevant features. The
value of this threshold (n) is directly related to the number of features in the
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dataset. For PhysicalActivity, the threshold values of 5, 10, and 15 have been
selected, while for the other datasets, the threshold values are 25, 50, and 75.
Moreover, MI calculation is required to be performed on discrete data. There-
fore, a discretization in 5 equal-width intervals has been carried out.

Dataset #Samples #Features #Classes Repository
physicalActivity (phys.) 6264 18 6 [10]
humanActivity (hum.) 7352 561 6 [10]
SRBCT* (SRB.) 83 2308 4 [11]
lung* (lung) 39 2880 2 [12]

Table 1: Main datasets properties. Star (*) identifies microarray-type datasets.

First of all, checking the similarity of the rankings obtained, Table 2 displays
the mean value and deviation of TPR for each combination of thresholds and
representations. Upon examining the baseline representations of the methods,
we can see that MIM and JMI exhibit similar behaviour. The use of 32 bits
resulted in identical rankings to the baseline and the TPR value decreased as
the number of available bits was reduced. Additionally, rankings with smaller
n values yielded lower TPR values since this metric is a ratio and making a
mistake in the ranking has more impact on the similarity metric. Moving on
to the results obtained by the versions that utilize logarithmic division, the
behaviour was again similar for both methods. It stands out how the 32-bit and
16-bit representations obtained lower TPR values around 0.1 when compared to
the previous versions without division. However, this trend did not hold for the
8-bit and 4-bit representations.

For the sake of brevity, and because in the previous experiments the highest
threshold usually obtains the best results, in the following we will only report
classification for this threshold, i.e., 15 features for the physicalActivity dataset
and 75 features for the others. Table 3 shows the classification accuracy values
obtained with k-NN after using MIM. It can be observed that the decrease in
the similarity between rankings does not lead to an accuracy reduction. This is
especially noticeable for the smaller 8-bit and 4-bit representations, where the
obtained TPRs were low. In addition, the results obtained using logarithmic di-
vision versions are comparable to those obtained using the base implementation.

Results for the JMI method are presented in Table 4. Similar to the previous
case, the differences in rankings do not directly imply a loss of information for
the classification step. Once again, the logarithmic split versions do not exhibit
significantly different results from those obtained by the baseline method, prov-
ing that using the proposed approach does not significantly impact the posterior
classification performance while achieving benefits in energy consumption.

4 Conclusions

In this paper, we explore the use of fixed-point representation and logarithmic
division to optimize filter-type feature selection methods in terms of efficiency
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Bits n
Method

Base Method Logarithmic Division
MIM JMI MIM JMI

32
5 - 25 1.000±0.00 1.000±0.00 0.890±0.11 0.900±0.12
10 - 50 1.000±0.00 1.000±0.00 0.940±0.04 0.950±0.05
15 - 75 1.000±0.00 1.000±0.00 0.907±0.06 0.930±0.07

16
5 - 25 0.990±0.02 0.970±0.04 0.870±0.08 0.870±0.09
10 - 50 0.995±0.01 0.960±0.05 0.930±0.03 0.910±0.06
15 - 75 0.983±0.03 0.987±0.01 0.910±0.06 0.880±0.08

8
5 - 25 0.590±0.10 0.610±0.17 0.600±0.06 0.560±0.13
10 - 50 0.695±0.13 0.705±0.09 0.700±0.07 0.675±0.15
25 - 75 0.817±0.04 0.777±0.16 0.837±0.12 0.753±0.23

4
5 - 25 0.100±0.07 0.100±0.11 0.090±0.06 0.070±0.06
10 - 50 0.230±0.11 0.210±0.20 0.255±0.12 0.195±0.15
15 - 75 0.423±0.30 0.333±0.37 0.440±0.32 0.377±0.34

Table 2: Mean and standard deviation of TPR for the base and logarithmic ver-
sions of the MIM and JMI methods using the four low-precision representations
(4, 8, 16 and 32 bits) for the different thresholds n of selected features.

Bits
Base Method Logarithmic Division

SRB. hum. lung phys. SRB. hum. lung phys.
64 98.413 85.727 72.685 70.402 100.00 85.564 74.352 70.062
32 98.413 85.727 72.685 70.402 99.603 85.863 75.185 69.923
16 98.413 85.714 72.685 70.259 100.00 85.895 74.352 70.035
8 96.825 95.598 66.759 71.121 97.163 94.895 72.685 69.955
4 87.619 87.908 63.519 68.487 87.897 94.709 68.333 68.093

Table 3: Average classification accuracy after applying MIM on low-precision
approaches (4, 8, 16 and 32 bits) and the double-precision floating-point version
(64 bits) for the largest n-top.

Bits
Base Method Logarithmic Division

SRB. hum. lung phys. SRB. hum. lung phys.
64 92.024 97.615 71.204 70.392 96.012 97.706 76.019 69.817
32 92.024 97.615 71.204 70.392 96.012 97.819 75.926 69.998
16 91.627 97.692 71.204 70.392 96.409 97.815 75.926 69.955
8 96.825 96.260 72.037 69.812 97.222 96.373 73.519 69.673
4 85.139 85.124 67.685 70.589 84.564 82.227 70.000 69.993

Table 4: Average classification accuracy after applying JMI on low-precision
approaches (4, 8, 16 and 32 bits) and the double-precision floating-point version
(64 bits) for the largest n-top.
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and energy consumption. We conducted experiments using two widely used
information-theoretic filter methods, MIM and JMI, with different bit repre-
sentations and threshold levels. Our findings indicate that using low-precision
representations can potentially reduce energy consumption [4] without sacrificing
information. Moreover, the use of logarithmic division allows for an additional
degree of energy savings [6], which is especially useful for resource-constrained
environments. Regarding the classification results, our study showed that the
modified algorithms using fixed-point representation and logarithmic division
performed comparably to the baseline implementations, even when the rankings
obtained were less similar.

However, there is room for further improvement.To better optimize these sav-
ings, further studies are needed in real-world environments to properly evaluate
time and memory consumption. Overall, these findings represent a promising
step towards efficient and scalable machine learning applications.
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