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Abstract. The forward-forward algorithm (FFA) is a recently proposed
alternative to end-to-end backpropagation in deep neural networks. FFA
builds networks greedily layer by layer, thus being of particular interest in
applications where memory and computational constraints are important.
In order to boost layers’ ability to transfer useful information to subsequent
layers, in this paper we propose a novel regularization term for the layer-
wise loss function that is based on Renyi’s quadratic entropy. Preliminary
experiments show accuracy is generally significantly improved across all
network architectures. In particular, smaller architectures become more
effective in addressing our classification tasks compared to the original
FFA.

1 Introduction

In the last decade, deep learning has encountered unquestionable success in a vast
range of learning tasks, with increasingly larger deep neural networks trained on
big datasets via end-to-end (E2E) backpropagation. However, there are appli-
cation settings where particular requirements such as limited memory or energy
resources make deep learning unfeasible [1, 2]. Additionally, the difficulty to
train deep neural networks E2E due to problems such as exploding/vanishing
gradient or slow convergence motivates the demand for alternative approaches.
Hinton [3] recently proposed the forward-forward algorithm (FFA), a method
that incrementally constructs the network by greedily training a layer and freez-
ing it before moving to add the next one, thus avoiding deep backpropagation
and the issues it entails. FFA is inspired by Boltzmann machines [4] and con-
trastive learning [5], as each layer is trained to discriminate real (‘good’) data
samples from fake (‘bad’) ones. This learning method is also claimed to be more
biologically plausible than backpropagation [6, 7]. However, the advantages of
reduced computational demands provided by FFA may come at the expense of
expressive hidden representations, since hidden layers are not optimally trained
to transfer information from input layers to deeper layers as in E2E learning. In
this paper, we propose to address this drawback by forcing the hidden represen-
tations learned by FFA to also improve the mutual information with the layer
inputs. This is achieved by introducing a regularization term in the original
FFA loss function based on Renyi’s quadratic entropy (sec. 3). The preliminary
experimental investigation carried on three binary and multi-class classification
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tasks show significant and consistent improvements in accuracy across different
neural network architectures with respect to the original FFA method (sec. 4).

2 Forward-Forward Algorithm

The Forward-Forward Algorithm (FFA) constructs a deep neural network by
greedily training one layer at a time to maximize the response to good (or posi-
tive) data and minimize it on bad (or negative) data [3], in an approach similar
to contrastive learning [5]. For a classification task on a set of labeled data
D = {(xi, yi)}Ni=1 with yi ∈ {1, ..., C}, positive samples as generated by con-
catenating xi with the one-hot encoding of the correct class yi, while negative
samples are generated as incorrect pairings. The first layer l = 1 learns a feature

transformation h
(1)
i = f1([xi ∥ yi]) that maximizes the goodness value

g
(1)
i ∝ ∥h(1)

i ∥2 (1)

for correct input pairings. In practice, this is done by treating the goodness

value g
(1)
i akin to the logits of a binary classifier p̂ = Sigmoid(g

(l)
i −θ) trained to

discriminate positive samples from negative ones by minimizing the binary cross-
entropy loss LBCE. This classifier is discarded after each layer training. Each
subsequent layer l = 2, ..., L is trained in a similar manner to learn features
h(l) = fl(h̄

(l−1)) from the previous layer representations normalized as h̄(l−1) ∝
h(l−1)/∥h(l−1)∥. The purpose of this normalization is to avoid reliance on the
goodness learned by the layer predecessor and thus to exploit information not

used by layer l− 1. The total goodness of the network ḡi =
∑L

l=1 g
(l)
i is used to

predict the class ŷi of an unlabelled sample xi as

ŷi = argmax1≤k≤C ḡ([xi ∥ 1k]), (2)

where 1k is the one-hot encoding of class k and ḡ(·) is the total goodness as a
function of neural network input. It is actually suggested by [3] to exclude the

first layer from the total goodness and to use instead ḡ⋆i =
∑L

l=2 g
(l)
i . While the

layer trained by FFA can have any form [8], in our experiments we adopt simple
fully-connected layers x 7→ ReLU(W(l) x+ b(l)) for tasks on vector data.

3 Entropy-based regularization

To obtain an effective hierarchy of hidden representations in the neural net-
work, the FFA greedy layer training should accomplish several objectives: (i)
ensure that useful information is transferred from the network input data to
all subsequent layer representations; (ii) avoid redundancy in each layer repre-
sentation due to high correlations among unit activations; (iii) differentiate the
representations learned by each layer. While the latter objective is addressed
by the normalization of input features for layers l > 1, objectives (i) and (ii)
cannot be accomplished simply by minimizing LBCE and by relying on different
initializations of unit weights.
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Therefore, we propose to maximize the mutual information I(h(l), h̄(l−1))
between the layer representation h(l) and the layer input features h̄(l−1) (for
l = 1 we assume h̄(0) = [x ∥ y]). For the mutual information defined from
Shannon entropy H(·), it holds that I(h(l), h̄(l−1)) = H(h(l)) − H(h(l)|h̄(l−1)),
where H(·|·) is the conditional entropy [9]. Since h(l) is computed by a non-
stochastic map, H(h(l)|h̄(l−1)) = 0, and it is thus sufficient to maximize the
entropy H(h(l)). Therefore, we change the FFA layer loss to be minimized in

L = LBCE − T ·H(h(l)), (3)

were we call the parameter T > 0 temperature, since from a thermodynamic point
of view LBCE can be considered the energy and L the Helmholtz free energy. For
computational efficiency we actually adopt the Renyi quadratic entropy H2(h

(l))
instead of Shannon entropy in equation (3), being H(h(l)) ≥ H2(h

(l)). Given

a batch of M samples {h(l)
i }Mi=1 with h

(l)
i ∈ Rd, Renyi quadratic entropy is

estimated via the Parzen–Rosenblatt kernel density estimator [10] as

H2 ≈ − log
1

M2

M∑
i=1

M∑
j=1

GS(h(l)
i − h

(l)
j ), (4)

where GS(·) is the Gaussian multi-variate kernel with bandwidth S. We make
the simplifying assumptions of normally distributed activations and diagonal S,
thus choosing S ≈ (4/M(d + 2))2/(d+4)s2 I ≈ (1/M)2/(d+4)s2 I in accordance
with Silverman’s rule. The parameter s > 0 is called the kernel scale, and
controls the smoothness of the density estimation in (4). Indeed, for s→∞ we
obtain an uniform distribution, while for s→ 0 we obtain the empirical sample
distribution; the choice of s has thus also an effect on mini-batch variance during
stochastic gradient descent. Both temperature T and kernel scale s will be tuned
via model selection in our experiments.

4 Experiments and discussion

We compare the accuracy of neural networks trained by FFA with the original
loss LBCE against training with our proposed entropy regularization. We perform
experiments on two binary classification tasks and one multi-class classification
task for different network architectures. Apart from the accuracy of predictions
computed by equation (2) with total goodness from all layers ḡ and from all
layers except the first ḡ⋆, we also report the accuracy of each individual layer;
model selection is performed on ḡ⋆ following [3]. Average and standard deviation
are over 5 trials. Model selection is performed for weight decay for FFA, and
additionally on temperature T and kernel scaling s for FFA+Entropy. Code
and details to reproduce our experiments are publicly available online.1

The double moon task [11] consists in classifying the points in the 2D plane
belonging to two sets shaped like two intertwined moons (see Fig. 1). This

1https://github.com/MatteoPardi/Entropy-FFA
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← FFA FFA+Ent. →

Fig. 1: Double moon task: goodness (top) and decision regions (bottom).

Layer FFA 10 +Ent. 10 FFA 100 +Ent. 100 FFA 1000 +Ent. 1000

all 90.0±0.1 99.2±0.7 97.5±1.8 100.0±0.0 97.2±0.4 100.0±0.0

1 90.2±0.6 91.0±0.1 90.5±0.1 90.5±0.1 86.5±0.1 86.5±0.1

2 90.2±0.3 99.6±0.2 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

3 63.3±18.2 99.5±0.6 98.2±2.2 100.0±0.0 94.0±2.3 100.0±0.0

⋆ (2+3) 89.2±0.5 99.7±0.4 99.9±0.2 100.0±0.0 98.2±1.1 100.0±0.0

Table 1: Test accuracy for the double moon binary classification task.

binary classification task showcases the ability of neural networks to learn deci-
sion boundaries in non-linearly separable tasks. We adopt fixed scaffold splits
640/160/200 of training/validation/test, training up to 3 layers of 10, 100, 1000
hidden units. The results reported in Tab. 1 show that adding our entropy regu-
larization leads to significant improvements in accuracy especially on smaller and
deeper networks. Notice also how the accuracy of goodness in the third layers of
FFA drops significantly, while FFA+Entropy is able to preserve it. In Fig. 1
we can also appreciate the shape of the decision boundary learned by FFA with
entropy regularization, leading to more robust classification particularly in the
concave regions of the two moons.

We replicate the same experimental setting for the noisy double moon task,
where noise sampled from a gaussian distribution of std 0.16 was added to the
original points. The results of Tab. 2 show that FFA+Entropy is more robust
to noise, consistently and significantly improving accuracy with respect to FFA.
This improvement in robustness can also be observed particularly in the concave
region of the red moon in Fig. 2.

Our final task is the 10 digit classification task MNIST, where original 28×28
gray-scale images have been flattened into vectors. We follow the setting of [3],
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← FFA FFA+Ent. →

Fig. 2: Noisy double moon task: goodness (top) and decision regions (bottom).

Layer FFA 10 +Ent. 10 FFA 100 +Ent. 100 FFA 1000 +Ent. 1000

all 89.3±0.3 95.2±0.6 95.9±0.2 96.8±0.4 96.3±0.3 97.5±0.1

1 89.6±1.0 89.9±0.9 90.2±0.4 90.7±0.3 87.5±0.1 87.7±0.3

2 90.0±0.6 97.6±0.5 96.1±0.2 98.2±0.3 96.6±0.2 98.0±0.1

3 58.3±11.9 97.8±0.4 96.1±0.2 98.2±0.3 95.7±1.2 97.8±0.3

⋆ (2+3) 89.4±0.4 98.0±0.4 96.5±0.1 98.1±0.2 96.6±0.4 98.0±0.1

Table 2: Test accuracy for the noisy double moon binary classification task.

adopting fixed scaffold training/validation/test splits of 50,000/10,000/10,000
samples, and training up to 3 layers of 20, 200, 2000 hidden units. The results
reported in Tab. 3 for this multi-class task confirm the trends we have observed so
far. Our entropy-based regularization consistently boosts the accuracy of FFA,
offering significant improvements in small- and medium-sized architectures, while
preserving the ability to learn effective hidden features also in the deepest layer
(l = 3), compared to FFA. By enhancing the ability of smaller networks to learn
better hidden representations, the proposed method offers a better trade-off
between accuracy and computational resources required by neural networks.

L. FFA 20 +Ent. 20 FFA 200 +Ent. 200 FFA 2000 +Ent. 2000

all 92.86±0.15 93.36±0.21 97.93±0.10 98.22±0.08 98.52±0.07 98.61±0.06

1 92.42±0.12 92.50±0.17 97.35±0.12 97.35±0.07 96.93±0.03 97.36±0.04

2 92.56±0.32 92.92±0.10 97.91±0.10 98.07±0.11 98.55±0.06 98.56±0.06

3 87.47±1.76 92.39±0.24 95.59±0.19 97.95±0.08 97.74±0.17 98.39±0.11

⋆ 92.42±0.26 93.21±0.12 97.79±0.14 98.23±0.09 98.53±0.07 98.58±0.08

Table 3: Test accuracy for MNIST 10 digits classification task.
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5 Conclusion

In this paper we have proposed a novel method to enhance the training of deep
neural network layers for the Forward-Forward Algorithm. Our method is based
on the introduction of a regularizing term in the loss function based on Renyi’s
quadratic entropy, with the objectives of ensuring the transfer of information
through the neural network layers and of improving the quality of hidden repre-
sentations. In our experiments on binary and multi-class classification tasks on
vector data, our method has achieved significant and consistent improvements
in accuracy across different network architectures. Particularly valuable are the
performance improvements on smaller networks, thus presenting a better trade-
off between accuracy and computational resources required by the models. This
is significant for resource-constrained applications, such as edge computing or
Internet-of-Things [1, 2]. In future works we will explore entropy-based regular-
ization on other types of tasks such as node and graph classification [8], and on
other incremental network construction algorithms beyond FFA [12, 13].

Acknowledgments Research partly funded by PNRR - M4C2 - Investimento 1.3, Partenar-

iato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1 “Human-

centered AI”, funded by the European Commission under the NextGeneration EU programme.

References

[1] B. Sliwa, N. Piatkowski, and C. Wietfeld. LIMITS: Lightweight machine learning for iot
systems with resource limitations. In ICC 2020-2020 IEEE International Conference on
Communications (ICC), pages 1–7. IEEE, 2020.

[2] T. Park, N. Abuzainab, and W. Saad. Learning how to communicate in the Internet of
Things: Finite resources and heterogeneity. IEEE Access, 4:7063–7073, 2016.

[3] G. Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv
preprint arXiv:2212.13345, 2022.

[4] G. E Hinton, T. J Sejnowski, et al. Learning and relearning in Boltzmann machines.
Parallel distributed processing: Explorations in the microstructure of cognition, 1(282-
317):2, 1986.

[5] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the 13th international Conference
on Artificial Intelligence and Statistics, pages 297–304, 2010.

[6] W. Illing, B.and Gerstner and J. Brea. Biologically plausible deep learning-but how far
can we go with shallow networks? Neural Networks, 118:90–101, 2019.

[7] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton. Backpropagation
and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.
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