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Abstract.

Hyperparameter optimization (HPO) is crucial for fine-tuning machine
learning models, but it can be computationally expensive. To reduce costs,
Multi-fidelity HPO (MF-HPO) leverages intermediate accuracy levels in
the learning process and discards low-performing models early on. We
conducted a comparison of various representative MF-HPO methods against
a simple baseline on classical benchmark data. The baseline involved
discarding all models except the Top-K after training for only one epoch,
followed by further training to select the best model. Surprisingly, this
baseline achieved similar results to its counterparts, while requiring an
order of magnitude less computation. Upon analyzing the learning curves
of the benchmark data, we observed a few dominant learning curves, which
explained the success of our baseline. This suggests that researchers should
(1) always use the suggested baseline in benchmarks and (2) broaden the
diversity of MF-HPO benchmarks to include more complex cases.

1 Introduction

Hyperparameter optimization (HPO) is a key component of AutoML systems. It
aims to find the best configuration of a machine learning (ML) pipeline, which
consists of data and model components. Hyperparameters (HP) are parameters
that cannot be learned directly with the primarly learning algorithm (e.g., gradient
descent), but affect the learning process and the performance of the pipeline.
Those may include number of layers and units per layer in deep networks,
learning rates, etc. HPO is usually formulated as a black-box optimization
problem[1], where a function maps a HP configuration to a performance score.
However, evaluating this function can be costly and time-consuming. Therefore,
Multi-fidelity HPO (MF-HPO) methods have been proposed [2, 3], which use
intermediate learning machine performance estimates to reduce the computational
cost and speed up the optimization process. In multi-fidelity algorithms, fidelity
refers to the level of accuracy or resolution at which a machine learning model
is trained and evaluated. Different levels of fidelity can be used to balance
the trade-off between computational cost and accuracy. For example, a low
fidelity level could involve training and evaluating a model on a small subset
of the data, while a high fidelity level would involve using the entire dataset.
Multi-fidelity algorithms use this concept to optimize hyperparameters and other
model parameters efficiently by exploring the model space using a combination of
different fidelity levels. The accuracy obtained at each fidelity level is used to guide
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the optimization process towards better performing models while minimizing the
computational cost.
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Fig. 1: Hyperparameter optimization and its
components including input/output, outer opti-
mization loop exploring new HP configurations,
inner optimization loop incrementally allocating
new training “steps” and model selection.

Fig. 1 presents the generic com-
ponents of a muti-fidelity HPO.
The input to HPO is the HP search
space. The output is a trained
model with the corresponding hy-
perparameters. HPO is a bi-level
optimization problem: the upper
level (outer loop) optimizes the
HP of the ML pipeline while the
lower level (inner loop) optimizes
the parameters of the learning ma-
chine, given the HP configuration
of the upper level. After complet-
ing the search process, a final step
of model selection is performed be-
fore returning the trained model.
In regular HPO, the inner loop is
halted by a given stopping crite-
rion. A natural improvement is to
consider the multi-fidelity setting,
where intermediate performance estimates are obtained at different stages of the
inner optimization process (as a function of the number of training examples or
training epochs). This involves monitoring a ”learning curve.”

This study evaluates the effectiveness of early discarding policies in the
inner loop, while random search is used for the outer loop. We use widely-
used approaches for early discarding, performing denovo search without prior
knowledge of learning curve typology or meta-learning involvement.

We consider two baselines at each extreme. The first evaluates each HP
configuration candidate at maximum fidelity, i.e., after being fully trained within
the overall time budget (100-Epochs). The second evaluates them at minimum
fidelity, after only one epoch of training. We demonstrate the effectiveness of the
1-Epoch approach and explain why it is successful. Our findings provide a new
perspective on previous studies that omitted this baseline. Only one study [4]
included a similar baseline and reported results similar to ours. Therefore, we
advocate for including the 1-Epoch baseline in further MF-HPO benchmarks.

2 Related Work

Our study focuses on methods, which train only a single model at a time,
but keep all check-points for further reference. Early discarding means switch-
ing to training a model with another HP configuration, before attaining the
maximum number of epochs allowed. A typical example of such strategy, some-
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times referred to as “vertical” model selection [5] is Asynchronous Successive
Halving [6] (SHA). Several methods can be adapted to this setting, including
Hyperband [3], which can explore different levels of fidelity to differentiate noisy
learning curves; Learning Curve Extrapolation [7] (LCE), which can observe early
performances and extrapolate future performances to decide whether training
should continue; FABOLAS [8], which learns correlations in the candidates’
ranking between different levels of fidelity; Bayesian Optimization Hyperband [9],
which embeds Bayesian optimization in Hyperband to sample candidates more
efficiently; Learning Curve with Support Vector Regression [10], which predicts
final performance based on the configuration and early observations; Learn-
ing Curve with Bayesian neural network [11], which is similar to the previous
method but switches the model with a Bayesian neural network; and Trace
Aware Knowledge-Gradient [12], which leverages an observed curve to update
the posterior distribution of a Gaussian process more efficiently.

The previous works had some limitations, which were primarily due to the
assumptions made about the learning curve. For example, methods based on
SHA assume that the discarded learning curves will not cross in the future,
since only the Top-K models are allowed to continue at any given step. In this
context, models that start slowly are often discarded. This phenomenon is known
as “short-horizon bias” [13]. For methods based on LCE, they either assume a
”biased” parametric model, or they are more generic but require a more expensive
initialization[14]. The second limitation is that the configuration returned is often
the lowest validation error observed during the search. However, this approach is
quite limiting because it does not consider more sophisticated model selection
schemes such as cross-validation or Hyperband. Therefore, we added the model
selection block in Fig. 1.

Benchmarks play a critical role in the design and development of HPO
methods. We have surveyed several recent benchmarks for learning curves that
are continuously evolving, such as HPOBench [15, 16], LCBench [17], JAHS-
Bench-201 [18], and YAHPO-Gym [19].

3 Method

Our experiments include representative state-of-the-art methods in multi-fidelity
HPO research. The first method considered is Successive Halving (SHA) [2]
which we consider in its asynchronous variant [6] to be able to handle a stream of
learners. SHA decides to continue the training loop at exponentially increasing
steps called rungs (based on learning curves [20] theory). At each rung, it
continues training only if the current observed score is among the Top-K scores
and discards the model otherwise. This method is error-prone when learning
curves are noisy. To make SHA more robust Hyperband (HB) [3] enforces the
exploration of more levels of fidelity on top of SHA to reduce the impact of noise
in decisions. However this is at the expense of consuming more training steps than
SHA. Finally, the last approach we consider consists in using a surrogate model to
predict the future of the learning curve, called Learning Curve Extrapolation
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(LCE) [7]. In theory, this approach is less likely to suffer from “short-horizon”
bias unless the learning curve surrogate is biased. The method also suffers from
instabilities in its original implementation [7]. To address this shortcoming,
we are using our own implementation of this method (See the RoBER method
described in supplemental material1).

We compare these methods with two baselines: the maximum fidelity baseline
(100-Epochs), which trains all methods for 100 Epochs and selects the best
one and a mimimal fidelity baseline (1-Epoch), which comprises in fact two
phases: (i) exploration search phase pre-selecting the Top-K after only 1 Epoch
(minimum fidelity blue loop in Fig. 1); (ii) model selection phase evaluating the
Top-K at maximum fidelity and returing the best model. 1-Epoch is expected to
perform poorly if there is a strong “short-horizon” bias (see previous secton for a
definiton) and noisy learning curves.

4 Experimental Results

Fig. 2: Comparing the performance
(mean and standard error) of various
early discarding strategies (all com-
bined with with random search) on
the Naval Propulsion problem from the
HPOBench benchmark.

In our analysis we looked at four bench-
marks: HPOBench, LCBench, YAHPO-
Gym and JAHS-Bench. But, since they
all yielded similar results, for brevity we
only expose the Naval Propulsion problem
from HPOBench. We provide complemen-
tary materials 1 with our full set of results.

To visualize the algorithm progress,
we display the test error as a function of
training epochs [19] (Fig.1). This type of
learning curve weighs training iterations
(epochs) equally for all HP configurations,
which may be deceiving since they can
vary in computational cost. Still, this is a
convenient simple method abstrating from
details of implementation. We configured the number of iterations for the outer-
loop optimization to 200 (red loop). As a result, the maximum fidelity policy
(100-Epochs), consumes the maximum number of 20,000 training epochs. In
contrast, its counterpart at minimum fidelity (1-Epoch, performed with a Top-3
model selection (K = 3) at maximum fidelity after the search), consumes a fixed
number of 200× 1 + 3× 100 = 500 training epochs.

Figure 2 shows the evolution of the test RMSE as a function of the number
of training epochs used. The key observation is that the test RMSE for the
1-Epoch (blue curve) and 100-Epochs (orange curve) strategies is similar at
the final point. However, the 1-Epoch policy uses 40 times fewer training
epochs than its counterpart, the 100-Epoch policy (20,000/500=40), as per our
experimental setup, which is evident from the last point of the blue and orange

1https://github.com/deephyper/scalable-bo/blob/main/esann-23/One_Epoch_Is_

Often_All_You_Need_Extended.pdf
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(a) Learning curves colored by final
rank.

(b) Evolution of the ranking with
epochs.

Fig. 3: Visualizing the ranking for good (blue) and bad (red) models for 1,000 randomly
sampled learning curves from the Naval Propulsion benchmark. (a) Models can be
selected from the first epoch. (b) The ranking stabilizes faster among the best models.

curves. Additionally, we note that the more complex agents (SHA, HB, and LCE)
do not differ significantly from each other and all result in similar final test RMSE,
but they consume significantly more epochs. Hyperband consumes slightly more
resources than SHA, which is consistent with its design. SHA consumes the least
training epochs, about 10 times fewer epochs than 100-Epochs, but still, four
times more than 1-Epoch.

After observing the performance of training for only one epoch during the
search, we will explain why. In Fig. 3a, we display 1,000 randomly sampled
learning curves from the same benchmark, colored by their ranking at maximum
fidelity. Low ranks, colored in blue, correspond to good models, while high ranks,
colored in red, correspond to bad models. This visualization reveals that the
groups of bad and good models can be identified in the first epoch of training,
making selection with one epoch effective. Some noise exists between models,
as seen in the blue curves, necessitating the top-K tournament selection to
differentiate among different models. The noise in the ranking for the same
benchmark can be visualized in Fig.3b, where the ranking for the same models at
each training epoch is displayed. The first half (before 50 epochs) has more noise
than the second half, and the ranking of good models stabilizes faster, already
after 5 epochs, compared to the ranking of bad models, which remains relatively
noisy until the end.

5 Conclusion

In this study, we investigated the optimization of hyperparameters for machine
learning models with minimal training steps using MF-HPO agents. We com-
pared various state-of-the-art multi-fidelity policies and discovered that a new
simple baseline method, not considered in prior becnhmarks, namely the 1-Epoch
strategy assessing candidate configuration at lowest fidelity, performs surprisingly
well. This was traced to the fact that good and bad models can be distinguished
early in the training process. This phenomenon occurs frequently in benchmarks
commonly used in the literature. Therefore, this point to the need to include
1-Epoch in forthcoming benchmarks and eventually designing new harder (possi-
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bly more realistic) benchmarks that will defeat it. Our work is limitated to using
“epoch” as a unit of fidelity. While this is convenient and appealing to conduct
studies independent of hardware implementation considerations, practical appli-
cation settings may require considering wall time or other options as units of
fidelity.
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