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Abstract. Co-clustering is a technique used to analyze complex and
high-dimensional data in various fields. However, traditional co-clustering
methods are usually limited to dense data sets and require massive amount
of memory, which can be limiting in some applications. To address this
issue, we propose an online co-clustering model that processes the data
incrementally and introduces a novel latent block model for sparse data
matrices. The proposed model employs a LSTM neural network and a time
and block dependent mixture of zero-inflated distributions to model spar-
sity and aims to detect real-time changes in dynamics through Bayesian on-
line change point detection. An original variational procedure is proposed
for inference. Simulations demonstrate the effectiveness of the methodol-
ogy for count data.

1 Introduction

As the amount of data in various fields grows exponentially, techniques as clus-
tering to summarize data are also increasingly needed. Co-clustering is useful
in this context since it clusters both observations and features simultaneously,
providing useful data summaries. Furthermore, there is a growing need to de-
velop machine learning models for time-dependent sparse data matrices and,
although many notable methods have been introduced in this field in recent
decades (Marchello et al., 2022b; Casa et al., 2021), the development of on-
line co-clustering methods remains largely unexplored. This paper proposes an
online extension of Zip-dLBM (Marchello et al., 2022a). We introduce three
novelties in this regard. The first is the ability of the estimation algorithm to
work online with streams of data. The second is the addition of an online change
point detection method. By capturing the data’s dynamic behavior, the method
can identify abnormal events that affect the generative process. To detect these
changes we make use of the Bayesian Online Change Point Detection (BOCPD,
Adams and MacKay, 2007) that runs on the estimated model parameters in real
time. The third novelty relies on a different modeling choice for the time evolving
parameters, in fact fully connected neural networks are substituted with LSTMs,
as their structure is deemed more appropriate for the purpose. Therefore, this
model introduces a new approach by incorporating an online inference method
for Zip-dLBM and online changing point detection.
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2 Zip-dLBM

The following section reminds the Zero-Inflated Poisson Dynamic Latent Block
Model (Zip-dLBM, Marchello et al., 2022a) for batch processing. This paper
has been proposed in a general way for any Zero-Inflated distribution, however,
here we focus on the Zero-Inflated Poisson (ZIP) distribution. In Zip-dLBM
the observed data are assumed to be collected into time evolving matrices, over
the interval [0, T ]. Being in a discrete time setting, we assume a time partition
of equally spaced points: 0 = t0 < t1 < tu ≤ tU = T . With a slight abuse of
notation we denote by t the time point tu. At time t, the incidence matrixX(t) ∈
NN×M has Xij(t) as generic element that counts the number of interactions
between the observation i and feature j that took place between t and t− 1.

Clusters modeling The rows and columns of X(t) are clustered into Q and L
groups, respectively. We denote by Z(t) := {Ziq(t)}i∈1,...,N ;q∈1,...,Q the latent
matrix representing the clustering of N rows into Q groups at a given time
point t. We assume that the i-th row of Z(t) follows an evolving multinomial
distribution, parameterized by α(t) := (α1(t), . . . , αQ(t)). In a similar fashion,
we introduce a latent matrix W (t) ∈ {0, 1}M×L, labeling the column clusters at
time t, and whose j-th row Wj(t) follows a multinomial distribution of param-
eter β(t) := (β1(t), . . . , βL(t)). The two random matrices Z and W are further
assumed to be independent.

Sparsity Modeling In order to model a potentially extreme sparsity, the ob-
served data are assumed to follow a mixture of block-conditional Zero-Inflated
Poisson (ZIP) distributions, where the entries Xij(t) are conditionally indepen-
dent: Xij(t)|Zi(t),Wj(t) ∼ ZIP (ΛZi(t),Wj(t), π(t)). We denote as Λ the Q × L
block-dependent intensity function of the Poisson distribution P(Xij(t), ·), and
π(t) is a vector of length T that indicates the level of sparsity at any given time
period. We finally provide an equivalent formulation of the above equation in
terms of a hidden random matrix, A ∈ {0, 1}N×M , where, independently for all i
and j, we define Aij(t) ∼ B(π(t)). Here, B(·) denotes the Bernoulli distribution
of parameter π(t). Thus:

Aij(t) = 1⇒ Xij(t)|Zi(t),Wj(t) = 0

Aij(t) = 0⇒ Xij(t)|Zi(t),Wj(t) ∼ P(Xij(t),ΛZi(t),Wj(t)).
(1)

Modeling the temporal evolution of the parameters We assume that the mixing
proportions α(t), β(t), and the sparsity parameter π(t) are governed by a system
of ordinary differential equations (ODEs). Since we work in discrete time we
discretize the dynamic systems by making use of their Euler scheme:

a(t+ 1) = a(t) + fZ(a(t)),

b(t+ 1) = b(t) + fW (b(t)),

c(t+ 1) = c(t) + fA(c(t)).

(2)

526

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



where fZ , fW and fA are three continuously differentiable functions and the
parameters α(t), β(t) and π(t) are softmax transformations of a(t), b(t) and
c(t), respectively.

2.1 The joint distribution

The set of the model parameters is denoted by θ = (Λ, α(t), β(t), π(t)) and the
latent variables used so far are Z(t), W (t), and A(t). Thus, the likelihood of the
complete data reads:

p(X,Z,W,A|θ) = p(X|Z,W,A,Λ, π)p(A | π)p(Z|α)p(W |β). (3)

The terms on the right hand side of the above equation can be further developed,
for details see Marchello et al. (2022a).

3 Online inference for stream data

In this section, we present Stream Zip-dLBM. The objective is to perform co-
clustering of rows and columns in real-time as new data becomes available.
To prevent memory overload, we have revisited the inference algorithm of Zip-
dLBM, enabling data to be processed without the need to store it in memory. To
allow the algorithm to update parameter estimations continuously as new data is
incorporated, we use a moving window, Gd(t), of size d. Using a moving window
allows us to keep only part of the data in memory. Therefore, for example, in
t, we keep in memory only the data in the interval [t − d, t] that will be used
for parameters estimation, while the data before the interval can be discarded
from the model. This allows to prevent memory overloads and maintain the
algorithm’s functionality.

3.1 Inference

Since we cannot compute the joint conditional distribution, p(A,Z,W |X, θ),
we rely on a variational procedure which optimizes a lower bound of the log-
likelihood. Let us thus introduce a variational distribution q(.) in order to de-
compose the log-likelihood as follows:

log p(X|θ) = L(q; θ) +KL(q(.)||p(.|X, θ)), (4)

where L denotes a lower bound and KL the Kullaback-Liebler divergence be-
tween the true and the approximate posterior. The objective is to find a dis-
tribution q(.) that maximizes the lower bound L(q, θ). In order to allow the
optimization of L(q, θ), we further assume that q(A(t), Z(t),W (t)) factorizes as
follows:

q(A(t), Z(t),W (t)) = q(A(t))q(Z(t))q(W (t)) =

N∏
i=1

M∏
j=1

q(Aij(t))

N∏
i=1

q(Zi(t))

M∏
j=1

q(Wj(t)).

(5)
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3.2 VE-Step

The optimal variational updates of q(·), under the assumption in Eq. (5), can
be obtained as in (Bishop, 2006, Ch. 10). We denote by δij(t) := q(Aij(t) = 1)
the variational probability of success for Aij(t), τiq(t) := q(Ziq(t) = 1) the
variational probability of success of Ziq(t), and ηj`(t) := q(Wj`(t) = 1) the
variational probability of success of Wj`(t). The explicit updating equations
and the proofs are provided in Marchello et al. (2022a).

3.3 Variational M-Step

Although the lower bound, L(q; θ), can be explicitly computed, it is here omitted
for lack of space. From that bound, we can optimize the model parameters θ,
while keeping q(·) fixed.

3.3.1 Update of Λ

Here our goal is to derive the online update of the Zero-inflated Poisson intensity
parameter, Λ. The variational distribution q(A,Z,W ) is kept fixed, while the
lower bound is maximized with respect to Λ at every time instant t, to obtain
its update, Λ̂. Hence, we compute the derivative of the lower bound L(q, θ) with
respect to Λ obtaining:

Λ̂q` =

∑N
i=1

∑M
j=1

∑(t−1)
u=1 τiq(u)ηj`(u)

(
Xij(u)− δij(u)Xij(u)

)
+
∑N

i=1

∑M
j=1 τiq(t)ηj`(t)

(
Xij(t)− δij(t)Xij(t)

)
∑N

i=1

∑M
j=1

∑(t−1)
u=1 τiq(u)ηj`(u)

(
1− δij(u)

)
+
∑N

i=1

∑M
j=1 τiq(t)ηj`(t)

(
1− δij(t)

)
=
Nold

q` +N
(t)
q`

Dold
q` +D

(t)
q`

=
Nold

q`

Dold
q` +D

(t)
q`

+
N

(t)
q`

Dold
q` +D

(t)
q`

.

Now we can distinguish between a part known at time step t− 1, namely Nold
q`

and Dold
q` , and the current updates at time t, N (t)

q` and D
(t)
q` . Then, denoting

Λ̂old
q` = Nold

q` /D
old
q` , we obtain the final online update:

Λ̂q` = Λ̂old
q` ·

Dold
q`

Dold
q` +D

(t)
q`

+
N

(t)
q`

Dold
q` +D

(t)
q`

. (6)

3.3.2 Update of α, β and π through deep neural networks

As mentioned in Section 2, the mixture proportions α and β, as well as the
sparsity parameter π are driven by three systems of differential equations. As
we assumed that the functions fA, fW and fZ are continuous, we propose to
parametrize them with three LSTM networks (Hochreiter and Schmidhuber,
1997). LSTM operates on a sequence of a specific length, and it produces a
sequence of the same length, but shifted one time step ahead. In Stream Zip-
dLBM the sequence length has the same size of the moving window, Gd(t). For
instance, at current time t, the input of LSTM would consist of a series of values
ranging from t− 1− d to t− 1, while the output will be a sequence of predicted
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values from t−d to t. Therefore, in the initial stage of the algorithm (i.e. the first
d time points), the parameters α(t), β(t), and π(t) are modeled via two-layer
fully connected neural networks. At t = d + 1, the estimates from the previous
time step, obtained via fully connected networks, serve as input to LSTM, which
is used for online parameter estimation from this point on. Once the neural nets
are trained via back-propagation (SGD) they provide us with the current ML
estimates of α(t), β(t) and π(t).

4 Bayesian online change point detenction

As previously stated, one of the aims of Stream Zip-dLBM is to perform on-
line change point detection. To accomplish this task, we combine the Bayesian
Online Change Point Detection (BOCD) method, proposed in a seminal pa-
per by Adams and MacKay (2007), with our strategy. BOCD detects change
points based on the estimation of the posterior distribution over the current
"run length", or time since the last change point, given the data so far observed,
using a simple message-passing algorithm. Essentially, the run length is used to
determine if a new data point belongs to the current partition based on previous
observations. If the new data point belongs to the current partition, the run
length will increase by 1 at the next time step, otherwise it will reset to 0. This
process is continuously repeated at each time step. It is worth noticing that the
BOCD algorithm is typically implemented in an online fashion, analyzing the
data as it streams in. However, in our case, we directly apply the algorithm to
the estimates of α(t), β(t), and π(t) that are generated by the LSTM. To prevent
detecting change points on parameters that will be recalculated in future time
steps, we run the BOCD algorithm only on time points "behind" Gd(t). Stated
differently, at time t, BOCD runs on parameter values at time instants t− d.

5 Experiments on simulated data

The purpose of this section is to highlight the main features of the proposed
model over a simulated data set. We aim at demonstrating the validity of the
inference algorithm presented in the previous sections. A simulated data set
with dimension 350× 300× 200 has been generated to perform this experiment.
The simulated dynamics of α(t), β(t) and π(t) can be seen on the left-hand side
of Figure 1. Based on the mixture proportions, the values of the latent variables
were then simulated through their distributions. Next, we used the sparsity pro-
portions, π(t), and the intensity function, Λ, to simulate the three-dimensional
tensor X as Zero-Inflated Poisson variables. We then applied the Stream Zip-
dLBM model to the simulated data set, using the actual values of Q = 3 and
L = 2 to demonstrate the model’s ability to recover the parameters. Figure 1
displays the true mixture proportions on the left side and the online estimates on
the right side. The red dashed lines depict the simulated and estimated change
points, respectively. We can see that Stream Zip-dLBM perfectly recovers the
evolution of the model parameters over time, including the change points. These
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results suggest promising applications of this model in real-world data analysis.

(a) True α(t). (b) Estimated α(t).

(c) True β(t). (d) Estimated β(t).

(e) True π(t). (f) Estimated π(t).

Fig. 1: Evolution of the true (left) and estimated (right) proportions of the
parameters α(t), β(t) and π(t), respectively.
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