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Abstract. Artificial Intelligence, and in particular Machine Learning,
has become ubiquitous in today’s society, both revolutionizing and im-
pacting society as a whole. However, it can also lead to algorithmic bias
and unfair results, especially when sensitive information is involved. This
paper addresses the problem of algorithmic fairness in Machine Learning
for temporal data, focusing on ensuring that sensitive time-dependent in-
formation does not unfairly influence the outcome of a classifier. In partic-
ular, we focus on a class of training-efficient recurrent neural models called
Echo State Networks, and show, for the first time, how to leverage local
unsupervised adaptation of the internal dynamics in order to build fairer
classifiers. Experimental results on real-world problems from physiological
sensor data demonstrate the potential of the proposal.

1 Introduction

Artificial Intelligence, and in particular Machine Learning (ML), is nowadays
ubiquitous thanks to massive investments in making it a commodity. In some
applications, e.g., games [1], healthcare [2], and text generation [3], these tools
have been shown to compare to human capabilities. These achievements are
accompanied by increasing concerns about their impact on society [4, 5]. In
fact, real-world datasets often reflect historical biases in society and, when these
data are fed to ML algorithms, they often result in models which actually ex-
acerbate these biases [6]. In this paper, we deal with the problem of ensuring
that ML models do not discriminate subgroups in the population based on, e.g.,
gender, race, or political and sexual orientation, namely to develop fairer ML
models [7]. In particular, in this paper we focus on a specific notion of fairness
called (Difference of) Demographic Parity (DP) [8]. DP is a fairness metric
that measures to what degree machine learning model’s predictions are inde-
pendent of membership in a sensitive group. In other words, DP is maximised
when the probability of a certain prediction is not dependent on sensitive group
membership. For example, if we have two groups of people, 1 and 2, and we
want to predict whether they will be approved for a loan or not, then the model
achieves maximum DP when the same percentage of people from group 1 and 2
are approved for a loan. The problem of unfairness is present even with critical
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temporal data as in the area of healthcare [9]. This motivates us to focus on
improving fairness on a class of deep learning models for sequential data un-
der the paradigm of Reservoir Computing (RC). RC is a paradigm for training
Recurrent Neural Networks (RNNs) particularly fast and energy-efficient. RC’s
key idea is to train only a readout layer (the actual classifier), while keeping
untrained a large randomly connected hidden layer, called the reservoir. The
reservoir is driven by the input time series, then the sequence of reservoir states
is exploited to learn the readout layer, entitled of operating the actual classifi-
cation. We make use of Echo State Networks (ESNs), a class of RC machines
which owes its name to the fundamental assumption of stability of its internal
neural dynamics, known in the literature as the echo state property. ESNs have
been successfully used in time series classification tasks, and Intrinsic Plasticity
(IP) has been shown to increase the accuracy of ESN classifiers building richer
representations of the temporal features [10]. Here, we introduce the use of IP
to efficiently pursue DP objectives by promoting the alignment of the reservoir
activations’ distributions, to make them indistinguishable on the basis of the
fairness-critical information. We propose a modular hidden layer composed of
multiple subreservoirs trained in a local and unsupervised fashion to blur po-
tential discriminatory features in the data from the perspective of the classifier
by architectural design. We test our approach by means of physiological sensor
data in the area of human monitoring.

2 Improving Fairness in Reservoir Spaces

ESN models are efficient RNNs, belonging to the RC [11] category, which exploit
the behavior of the recurrent layer as a discrete-time dynamical system. In ESNs,
the recurrent layer is denoted as reservoir and is made up of a set of sparsely
connected neurons. Given an input sequence of vectors u(t) ∈ R

NU with t ∈ [T ],
the dynamics of a reservoir with R leaky-integrator neurons is regulated by the
following state transition function:

x(t) = (1− a)x(t− 1) + a tanh
(
Winu(t) + brec + Ŵx(t− 1)

)
(1)

where Win ∈ R
NR×NU is the input transformation matrix, Ŵ ∈ R

NR×NR is
the recurrent transformation matrix, brec ∈ R

NR is the reservoir bias term, and
x(0) = 0. The main advantage of using ESNs is that the matrices Ŵ and Win

are kept fixed. This allows to avoid backpropagating the error signal through
time and to learn the output transformation for the task at hand efficiently. In
particular, a common choice is to address such learning problem as a linear sys-
tem, and the output transformation y(t) = Wx(t)+bout is learned by leveraging

the closed-form equation of ridge regression, i.e., W = YST (SST +λI)−1, where
W ∈ R

NY ×NR is the output transformation matrix, Y ∈ R
NY ×NT denotes the

sequence of target labels, S ∈ R
NR×NT is the matrix of time-ordered reservoir

states, λ is an L2-regularization term, and I is the identity matrix.
In this paper, we propose ESNs that are intrinsically fair, meaning that,

given a learning task where the input time series are coming from different sen-
sitive groups (e.g., gender or ethnicity), the prediction is performed on temporal
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Fig. 1: Proposed RC architecture assuming the inputs are coming from two
groups (1 and 2). Inputs are routed toward the group-specific reservoir, and the
resulting sequence of states passes through a common readout layer.

features adapted to generate the same statistics regardless of the group mem-
bership. Without loss of generality, in Figure 1 we sketched an architecture for
solving a learning task where the input data are coming from two subpopula-
tions. Our architecture presents two reservoirs, namely R1 and R2, one for each
group. Given an input sequence u, R1 is activated exclusively when u belongs
to Group 1, and R2 is activated exclusively when an input belongs to Group 2.
Finally, the output of the ESN is computed by a readout layer common to both
R1 and R2, meaning that it takes in input sequences of states from both reser-
voirs. Since the readout is trained by means of sequences that can come from
either reservoir Ri, our aim is to avoid for its predictions to leverage on the
subpopulations’ biases. The fundamental assumption to achieve this objective
is that the dynamics of each group-specific reservoir must not expose the bias of

the corresponding subpopulation. To achieve this property, all the group-specific
reservoirs are initialized with the same set of parameters (i.e., common Ŵ, Win,
brec and α). Then, all of them are adapted independently via Intrinsic Plastic-
ity (IP) [12], an unsupervised algorithm which improves the information gain of
the reservoir. Formally, this algorithm reformulates the neurons’ activation by
including a gain and bias parameter to scale and translate the cumulative input
of the neuron, i.e., x̃ = tanh (gxnet + b). When using the tanh as non-linearity,
the objective of IP is to minimize the Kullback-Leibler divergence between the
empirical distribution of the neural activations and a desired Gaussian distribu-
tion with parameters µ and σ. Sparing the details of their derivation, the update
rules applied by this algorithm are the following:

∆b = −η((−µ/σ2) + (x̃/σ2 + 1− x̃2 + µx̃)) (2)

∆g = η/g +∆bxnet (3)

where µ and σ denote the mean and standard deviation of the target Gaussian
distribution and η is a learning rate. In our setup, each group-specific reservoir
Ri is equipped with a local set of gain and bias parameters gi and bi, and the
unsupervised adaptation of Ri via IP is performed on the input data belonging
to Group i with a common target gaussian with parameters µ and σ. Besides
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its common effect of improving the information gain and the performance of the
ESN on the task at hand, adapting the group-specific reservoirs Ri via IP allows
for having group-independent dynamics. Informally speaking, the key intuition is
that after the IP session, R1 and R2 are adapted to produce approximately the
same Gaussian distribution of activations when driven with the inputs belonging
to, respectively, Group 1 and Group 2. This makes it harder for the subsequent
predictor to exploit any discriminatory feature based on the group membership
to increase the accuracy. A similar idea has also been leveraged in [13], showing
its effectiveness in the context of end-to-end trainable deep feed-forward models.
Finally, note that, to leverage this approach, the sensitive feature need to be
available in the testing phase which might not always be possible to due to legal
requirements [14].

3 Experiments

We test our methodology on two time series classification datasets: WESAD
[15], and the Tufts fNIRS Mental Workload (TfMW) [16]. WESAD is a mul-
timodal dataset for stress and affect detection from both a wrist- and a chest-
worn device, which was collected from 15 participants in a ≈36-minute session
where they performed activities depending on the cognitive state to be induced.
Specifically, we train binary classifiers focusing on the two classes “stress” and
“amusement” of the WESAD dataset, and measure the fairness with regard
to the two populations of males and females. TfMW is a dataset composed
of ≈30-seconds of multivariate recordings from a sensor probe placed on the
forehead. These time series representing brain activity throughout the session
are used as input for the prediction of the mental workload intensity of the
user during that window of time. In particular, we use only TfMW data from
subjects declared as either white or asian, resulting in a total number of 60
subjects. Specifically, we train binary classifiers focusing on the two classes of
workload intensity “0-back” and “2-back” of the TfMW dataset, and measure
the fairness with regard to the two populations of whites and asians. We make
experiments on 2 models. The first is eq. (1), without the use of IP. The second
is our proposed model described in Section 2 and depicted in Figure 1. For
both models, we use reservoirs of 100 neurons. The IP algorithm is always set
with a mean value of µ = 0, and run for a fixed number of 10 epochs to fix
the computational budget. We perform validation via a random search on the
following grid of hyperparameters: ρ ∈ {0.5, 0.7, 0.9, 1.1}, ω ∈ {0.1, 0.5, 1., 1.5},
a ∈ {0.01, 0.1, 1}, λ ∈ {0, 0.001, 0.1}, for all models, and also σ ∈ {0.01, 0.1, 1},
η ∈ {0.001, 0.01, 0.1} for the model with IP. The hyperparameters ρ, and ω,

rescale the reservoir matrix Ŵ, and the input-to-reservoir connections Win of
eq. (1), respectively. While a, λ, σ, and η, are defined in Section 2. Note that
the possible combinations of hyperparameters for the model with IP are 6 times
larger than the one without IP. Therefore, to ensure a similar exploration of
the hyperparmater’s grid, the model with IP has been run with 6 times more
random trials. The WESAD dataset is composed of 15 subjects in total. We
perform leave-one-out double cross-validation. For each subject left out as test,
use remaining 14 subjects for training. Specifically, we use 10 subjects for actual
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Dataset WESAD TfMW

no-IP acc 71.97% 56.92%

IP acc 78.16% 58.56%

no-IP fair 93.11% 95.03%

IP fair 97.14% 96.98%

Table 1: Test set accuracy and fairness
measure on WESAD and TfMW, the
subpopulations encompass gender and
ethnicity biases respectively.

0.92 0.94 0.96 0.98 1.00

Validation Fairness

0.57

0.58

0.59

0.60

0.61

0.62

0.63

V
a
li
d
a
ti

o
n
 A

c
c
u
ra

c
y

Accuracy-Fairness Trade-off

Fig. 2: Accuracy-Fairness trade-off on
validation data of TfMW without IP
(red) and with IP (blue).

training, and 4 subjects for validation. We end up with a set of hyperparameter
to test on each of the 15 subjects. Therefore, for each test subject left out, we
train on the remaining 14 training subjects with the hypeparameter combination
yielding the best validation accuracy, and compute test accuracy and fairness
DP metric. Then, we provide the final test accuracy as the arithmetic mean
over all the subjects. The subset of TfMW dataset that we consider in our ex-
periments is composed of 65 subjects in total. We shuffle the 65 subjects and
partition them into 13 buckets of 5 subjects each. We perform a similar leave-
one-out double cross validation as we did on the WESAD dataset, but here on
a per bucket basis. Specifically, for each bucket left out as test, we use the
remaining 12 buckets for training, 9 buckets for actual training, and 3 buckets
for validation. The results of the validation session on the TfMW dataset are
reported in Figure 2. From Figure 2 emerges a trade-off between accuracy and
fairness, in line with previous works in the literature [17, 18]. When randomly
selecting hyperparameters, the model with IP tends to have on average larger
values of fairness, at the price of slightly decreasing the accuracy. Interestingly,
when performing model selection based on the maximisation of the accuracy on
validation, this trade-off disappears. As shown in Table 1, the final results of
accuracy and fairness on the test session reveal an increase in both the metrics
of accuracy and fairness. While the increase of accuracy on test might be at-
tributed solely on the better representations of the temporal information built
by IP, the increase of fairness is due to the intrinsic architectural bias provided
by our proposed model. These experiments confirm the validity of our method-
ology. The discriminatory biases contained in the data get blurred into each
group-specific reservoir making harder for the subsequent readout classifier to
leverage on discriminatory features to increase the accuracy.

4 Conclusions

In this paper, we proposed an RC-based model to perform classification with
the goal of improving the fairness of the classifier. Our methodology leverages
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on the IP algorithm, creating different reservoirs that produce approximately
similar features when fed with data from different subpopulations. This makes
it harder for the classifier to rely on discriminative features to increase accuracy.
From experiments based on real physiological data, we have shown that our
proposed model can improve fairness while achieving higher accuracy than the
baseline case without IP. The already promising results reported in this paper
motivate us to make efforts to generalize the proposed methodology to a single
reservoir configuration, rather than a modular one composed of sub-reservoirs.
Future work will also explore forms of local unsupervised reservoir adaptation
that explicitly address the fairness metrics. Future work will also investigate
extensions of the introduced approach to different deep learning architectures,
e.g. convolutional neural networks and large language models.
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