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Abstract. The Rock-Paper-Scissors game is a popular zero-sum game
of cyclic nature, with a mixed-strategy Nash-equilibrium that has been
the subject of a large number of studies and is of particular interest for
economy, sociology and artificial intelligence. While there are numerous
studies exploring evolutionary dynamics and learning, the overwhelming
majority of these consider the game in its classical form, and two impor-
tant axes with potential relevance remain unexplored. First, studies with
policy-based reinforcement algorithms are lacking, and second, few exist-
ing investigations attempted to study such cyclic games with more than
two players. The present work aims to address both of these matters.

1 Introduction

Multi-Agent Reinforcement-Learning (MARL) has shown great potential in many
real-world applications in various domains such as robotics, medicine, agricul-
ture, economy, etc. [1, 2]. Due to the fact that these systems consists of au-
tonomous agents with learned policies, it is of crucial importance to understand
and explain the incentives and the nature of interactions between agents. To this
end, game-theory is highly relevant to MARL as it provides robust mathematical
tools to analyse, interpret and predict agent behavior such as cooperation, con-
flict, and coordination [3]. Many existing studies consider social dilemmas such
as the Prisoner’s Dilemma, the Snowdrift game, etc. [4, 5]. These models how-
ever mostly experiment with games where there exists some pure-strategy Nash-
equilibra. The Rock-Paper-Scissors (RPS) game is a classical game-theoretic
model with a mixed-strategy Nash-equilibrium, which has been subject to vast
academic scrutiny, since it proves to be an intuitive model of species competi-
tion in ecological systems and price cycling in economy [6, 7]. However, multi-
agent systems modeling such situations generally need to account for interactions
among potentially more than two agents, possibly involving multiple actions. We
argue that a generalised RPS game can capture a larger class of scenarios that
the classical 2-player 3-action version cannot account for.

Within the reinforcement learning (RL) domain, policy-based methods have
become increasingly popular, the introduction of Proximal Policy Optimisation
(PPO) being a major breakthrough for the field [8]. This method searches
directly through the policy space and addresses the issue of large policy updates
by means of a clipped objective function. Unlike value-based methods that most
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existing investigations use in game-theoretic scenarios, PPO is a naturally good
fit for learning mixed strategies.

The RPS game has been studied abundantly. A version with configurable
number of actions of the game has been incorporated into the Petting-Zoo library
[9], however it still only accounts for two agents. Other studies, such as [10]
use RPS as an example benchmark. Most of the literature however considers
evolutionary dynamics in the RPS [11, 12, 13]. In [12] the effects of population
flow are investigated on the community of agents, while Jia et al. [11] considers
feedback from the environment and finds evolutionarily stable strategies.

The aim of this paper is to study the RPS game in its general form that can
account for multiple players (N ≥ 2) and multiple actions (M ≥ 3). While the
generalization of the game across the number of actions is well known, to our best
knowledge no existing work generalized across the number of players as well. This
works aims to address this, and we call the resulting game the N-Player M-action
Rock-Paper-Scissors game (NMRPS). The work of Lanctot et al. [14] comes
closest to our approach. They proposed a benchmark to evaluate RL agents
against RPS playing bots. The proposed benchmark however is based on the
2-Player iterated RPS, with population dynamics. We argue that a simultaneous
game of N players is equally relevant. Nonetheless, our metrics are inspired by
this work and thus comparable to it. We borrow the concept of exploitability and
measure performance according to it when applicable. Our second contribution
is studying the behavior of RL agents driven by PPO in the iterated NMRPS
game, guided by the following research questions: Q1: To what extent can PPO
exploit fixed strategies and dominate them? Q2: What emergent behavior can
be observed on multiple PPO-agents co-evolving in this environment, and how
do these behaviors depend on the number of agents, actions and histories?

2 A theoretical model for the N-Player M-action RPS
game

We introduce the N-Player M-action RPS (NMRPS) as a normal form game.
The generalization across the number of actions is straightforward and is a well-
known exercise in the community. To preserve the balance of the game, every
action has to win over exactly as many actions as many it defeats (thus M must
be odd). Further, consider the actions as the nodes of a directed graph, where
the directed edge (a, b) means a beats b. This graph structure boils down to a
regular tournament, since all actions have to be related. One straightforward
way to construct such a graph is to label the actions as integers from 0 to M -1
and consider that the winner between two distinct actions W (a, b) = max(a, b)
when a and b are both odd or both even, and W (a, b) = min(a, b) otherwise.
Due to symmetry, min and max can be reversed. Further, generalizing across
the number of players is similarly intuitive. Considering N ≥ 2 players, the
joint action profile of the game would be a vector of N numbers. The payoff of
a player i is computed by adding the number of actions from the profile that i-s
action beats and subtracting the ones that defeat it. Table 1 shows the flattened

346

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



payoff matrix of this generalized game for three players and three actions.

1/(2,3) S, S S, P S, R P, S P, P P, R R, S R, P R, R
S 0,0,0 1,1,-2 -1,-1,2 1,-2,1 2,-1,-1 0,0,0 -1,2,-1 0,0,0 -2,1,1
P -2,1,1 -1,2,-1 0,0,0 -1,-1,2 0,0,0 1,1,-2 0,0,0 1,-2,1 2,-1,-1
R 2,-1,-1 0,0,0 1,-2,1 0,0,0 -2,1,1 -1,2,-1 1,1,-2 -1,-1,2 0,0,0

Table 1: Payoff matrix with N = 3 and M = 3

It can be trivially seen that pure strategies are easily exploitable. A mixed-
strategy Nash-equilibrium must make players indifferent to each other’s strate-
gies. If each player has a mixed strategy, then in a mixed strategy profile s,
we can write the probability of player i choosing action j as pij . Further, let’s
denote an action profile as a = (a0, a1, ..., aN−1) where ai is the action chosen
by player i. The payoff of player i given an action profile a is Pi(a). With a
slight abuse of notation, we can denote the utility of i doing action j in the pres-
ence of the other players’ action profile a−i as Pi(j, a−i). Then, each player’s
utility for doing a certain fixed action j must be the same as the utility for
all other actions, and this has to hold true for all players. The utility of a
player i doing action j given a mixed strategy profile of opponents as s−i is

Ui(j, s−i) =
∑
a−i

Pi(j, a−i) · IP(a−i), ∀i ∈ {0, . . . , N − 1},∀j ∈ {0, ...,M − 1},

where: a−i = (a0, . . . , ai−1, ai+1, . . . , aN−1) and the probability of one action

profile a−i is defined as IP(a−i) =
N−1∏

k=0,k ̸=i

pkak
. Moreover, as every mixed strat-

egy must be a valid distribution over actions, we must have for all players i that∑
0≤j≤M−1

pij = 1, ∀i ∈ {0, 1, ..., N − 1}. Since for each action the number of

defeated and defeating actions is the same, the unweighted sum of payoffs for

each player Ui(j, s−i) =
∑
a−i

Pi(j, s−i) is zero, which implies that a solution of

the system consists of those pij-s for which all IP(a−i) values are equal. One
can observe that pij = 1

M is a solution of the system for all actions j and all
players i, yielding 0 reward in expectation. Thus we have demonstrated that in
the extended game, uniform randomization is still a Nash-equilibrium, despite
the variable number of agents and actions. Nonetheless, the proposed model
exposes an interesting kind of strategic complexity. From the above rules it fol-
lows that independently of the opponents’ strategies, any player that randomizes
uniformly will receive 0 payoff in expectation. However, such strategy configu-
rations are not equilibria, as playing non-uniformity still yields an incentive to
exploitation from the opponents, which makes the game particularly interesting
for larger N and M .
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3 Results and discussion

Having introduced a suitable game-theoretic test-bed for MARL, this section
aims to present some experiments conducted on the proposed environment. We
study the behavior of intelligent players in the iterated NMRPS, powered by
PPO individually, against fixed strategies and against each other. Thus, the
entire setting can be viewed as a decentralized MARL system. The environment
state of each agent, fed to PPO is obtained by concatenating the numerical values
of the last H actions made by each opponent into one vector. Each experiment
runs 200,000 total timesteps, divided into episodes of 200 iterations of the game,
over which average reward is computed to assess performance and convergence.
We used the best-converging hyperparameters from N=2 experiments for all
tests, as alterations didn’t significantly affect results despite non-convergence
for N > 2: batch size = 200, γ = 0.99, λ = 0.95 and a learning rate of 3 · 10−4.
We consider H ∈ {1, 3, 5, 10, 15}, M ∈ {3, 5, 7, 11} and N ∈ {2, 3, 4, 5, 6}.

Additionally, we provide two intentionally suboptimal fixed strategies of the
game to evaluate the performance of learning agents: (1) Distribution - chooses
actions according to a distribution over actions; and (2) Cycler - chooses all
actions in a round-robin fashion from a fixed array of actions.

Answering Q1, through our experiments we find that one PPO agent eas-
ily exploits non-uniform Distribution agents. By means of obtainable reward,
playing against multiple distribution players is equivalent to playing against one
with the mean distribution of all the rest. Exploitability of fixed players can be
measured by comparing the obtained reward against the maximum achievable re-
ward, and we use this as a performance metric against fixed players. For example,
for M = 3 and distribution (0.7, 0.2, 0.1) over the actions (0, 1, 2), an opponent
can exploit by playing 2 all the time, getting in expectation 0.7− 0.2 + 0 = 0.5,
which in 200 rounds yields a maximum average reward of 100. Average reward
was calculated as the running mean reward of the last 100 episodes. Experiments
against fixed players have been repeated four times and averaged.

We find that playing against distribution players, PPO can achieve 98% of the
maximum achievable reward when H ≤ 3, and decreasing as H grows, getting
down to as low ass 87% in average when H = 15. Increasing N decreases
performance to a similar extent, however increasing M seems not to hurt it.
The exploitability of cyclers mostly depends on the regularity of the cycles and
on H. Here, increasing H yields better results (around 99% when H is at least
as large than the cycle length and steadily decreasing). Increasing the number
of agents does not have any effect(we consider all opponents have the same cycle
length), however increasing M slightly improves performance since it increases
the predictability of patterns in the history.

Addressing Q2 is arguably the most compelling. Pitting multiple learning
agents together, convergence to the Nash-equilibrium happens only in the sim-
plest of cases. For N = 2, M = 3 and H = 1, the system successfully converges
to the Nash equilibrium. For N = 3 and M = 3, the system converges with a
smaller learning rate of 0.0001 to approximately uniform randomness after some
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initial fluctuations. For both larger N or M , the non-stationarity of the sys-
tem becomes prevalent and we observe divergence. Whenever all agents except
one learn to uniformly randomize, each agent will get 0 payoff in expectation,
including the last one, which is now thus indifferent to its own strategy. Then
however, all the other agents are incentivised to exploit non-uniformity, making
themselves exploitable. Systems comprised of more than three PPO agents di-
verge in such a cycling fashion, average rewards going up and down indefinitely.
This phenomenon however effectively captures price or social cycling, empiri-
cally observed in humans [15]. Additionally, we find that this cycling behavior
emerges even with N = 2, whenever M > 5. Longer history lengths and having
more actions also seem to increase the amplitude of fluctuation in average re-
ward. Figure 1 shows the average reward of PPO agents against each other as
they evolve through time.

Fig. 1: Convergence and cycling of N = 2 and N = 6 PPO agents with different
history lengths and numbers of actions

4 Conclusions and future work

In this work we have successfully generalized the well-known Rock-Paper-Scissors
game into a model with the key property of having uniform randomization as
Nash equilibrium. We showcased its relevance by experimenting with agents
driven by deep RL methods, and explored some emergent behavior under this
model. However, further investigations are necessary to properly understand
the model itself, whenever N and M vary. One particularly interesting line of
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future work would be to explore meta-learning against different fixed or adap-
tive opponents, in order to study how well learning agents can exploit different
patterns. Better explanations and further investigations of the non-convergence
of the system and the cycling behavior are also needed.

Understanding the behavior and incentives of individual agents in MARL
systems remains a particularly difficult problem. The provided game model
proves to be useful in this pursuit, and our conducted experiments uncover
valuable insights into the intricacies of MARL.
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