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Abstract. Quantum algorithms evolve an initial quantum state into
another during computation to obtain meaningful results. However, this
evolution introduces the cost of re-preparing the same initial quantum
state for different tasks. Unfortunately, since quantum memory is not yet
available, this cost cannot be ignored in Quantum Artificial Intelligence
(QAI), where the initial quantum state typically coincides with a quan-
tum dataset. Redundant state preparations for different tasks on the same
dataset can reduce the advantages of quantum computation. To address
this issue, this work proposes a new technique: the Logarithmic Quantum
Forking (LQF). LQF performs state preparation for an initial quantum
state once and employs additional qubits to compute an exponential num-
ber of tasks over the initial quantum state. LQF enables more efficient use
of quantum computation in QAI by amortizing the cost of preparing the
initial quantum state.

1 Introduction

Quantum computers promise to reduce the cost of solving problems across vari-
ous domains. However, preparing an initial quantum state |ψ〉 [1, 2, 3] for a given
quantum algorithm A can be computationally expensive. Nevertheless, running
A on several inputs requires the initial quantum state |ψ〉 to be re-prepared for
each input. Typically, a quantum algorithm evolves the prepared initial quan-
tum state |ψ〉 during computation into another one, making it no longer usable
unless it is re-prepared at some cost by uncomputation [4]. A workaround would
be to copy the known initial quantum state multiple times after preparation.
However, the No-cloning Theorem of quantum mechanics [5] prohibits the exact
copy of a quantum state. Therefore, copying a quantum state as a means to
overcome the expense of multiple state preparations becomes impractical. As
a result, this theorem has practical implications that limit the advantages of
quantum algorithms. A typical use case where having multiple copies of an
initial quantum state would be beneficial is the Quantum Artificial Intelligence
(QAI) realm. Indeed, a classical dataset can be large; thus, the cost of encoding
classical data into the corresponding quantum state |ψ〉, representing a quan-
tum database, can be significant. Hence, if we want to run more instances of
a quantum algorithm A on the same quantum dataset |ψ〉 over different inputs
in the same circuit, we pay the cost of preparing |ψ〉 for each input. Finding
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Fig. 1: Logarithmic Quantum Forking circuit framework.

innovative ways to reduce the state preparation cost remains an active area of
research in quantum computing. Although a quantum state cannot be copied,
it is possible to fork a quantum state. In [3], the authors introduce the idea of
quantum forking (QF). They observe that forking a quantum state is similar to
forking processes in operative systems, where each fork represents a process that
evolves independently. In [6], the authors provide a quantum forking technique:
Quantum Forking-based Sampling (QFS). Given an initial quantum state |ψ〉 of
q qubits, and T forks, QFS requires d+ q(T −1) additional qubits. Hence, when
q or T are large, the forking cost in terms of qubits is not negligible.

This work presents a new technique based on QF: the Logarithmic Quan-
tum Forking (LQF). LQF creates a number T of forks of the initial state |ψ〉
of q qubits employing only d = log2 T control qubits. Then, each fork evolves
independently through controlled gates on the d control qubits. Eventually, we
measure the qubits representing the outputs of each fork at once employing only
T additional quantum registers of l qubits, where l is the number of qubits en-
coding the result of a given fork, and l ≪ q. With respect to QFS, LQF reduces
the number of additional qubits by a factor T (q − l). Moreover, LQF keeps the
success probability of each fork constant when an algorithm A running on differ-
ent forks requires post-selections. To summarise, the LQF technique: 1) scales
the number of T forks in the number d of control qubits exponentially, and 2) re-
duces the number of state preparation of |ψ〉 routines by Θ(T ) by adding l(T−1)
qubits. LQF proves particularly useful in the QAI field, where an efficient use
of the additional qubits required for implementing QF techniques is crucial due
to the potentially large number of tasks involving the same dataset. This work
also showcases an application of LQF for a quantum version of the well-known
K-nearest neighbors algorithm (KNN) [7], along with a Qiskit implementation1

of this use case for both the LQF and QFS forking techniques.

1Code available at: https://github.com/Brotherhood94/logarithmic_quantum_forking.git
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2 Logarithmic Quantum Forking

Forking. Let |ψ〉 be an initial quantum state of q-qubits obtained from a state
preparation technique, and let T be the number of tasks involving |ψ〉. For
simplicity, let us assume T is a power of 2. Eventually, let d = log2 T be the
control qubits. Hence, we fork the quantum state |ψ〉 in T forks by applying

a Hadamard gate on each of the d control qubits: H |0〉⊗d |ψ〉 = 1
√

T
(|0〉 +

· · ·+ |T − 2〉+ |T − 1〉)⊗ |ψ〉 = 1
√

T

∑T−1
i=0 |i〉 ⊗ |ψ〉, where i denotes the integer

representation of a d-bit binary number (Fig. 1).

Evolution. Each binary configuration i ∈ [0, 1, . . . , T − 1] of the d control
qubits flags a specific fork of the quantum state |ψ〉. By leveraging the control
qubits, it is now possible to independently evolve each fork of |ψ〉 by means of any
gate U controlled by the d control qubits. That is, if we want to evolve the i-th
fork of the quantum state |ψ〉 according to a generic gate Uj , then we apply Uj

controlled by |i〉. It is worth noting that we can evolve each fork in any order, and
it is possible to evolve a given fork i with subsequent gates controlled by the same
configuration |i〉 of the control qubits. For example, according to Fig. 1 we have
the following state: 1

√

T
(|0〉⊗U2U0 |ψ〉+|1〉⊗U1 |ψ〉+|2〉⊗U3 |ψ〉+· · ·+|i〉⊗Uj |ψ〉),

which we can write more concisely defining |ψi〉 as the quantum state |ψ〉 evolved
in fork i, then: 1

√

T

∑T−1
i=0 |i〉 |ψi〉.

Merging. The merging step is fundamental to retrieve the results of each
fork simultaneously. After the Evolution step, each fork encodes the result of
the corresponding fork in superposition in a subset of l-qubits of |ψ〉. Then,
we prepare T − 1 quantum registers of l-qubits, each in equal superposition:
1

√

T

∑T−1
i=0 |i〉 |ψi〉

⊗T−1
i=0 |+i〉⊗l

. Lastly, for each fork i ∈ [0, 1, . . . , T − 1], we

swap the l-qubits of |ψ〉 encoding the results of each fork, with the quantum

registers |+i〉⊗l
controlled on the configuration |i〉 of the control qubits. From

a high-level perspective, the controlled swaps store the results of each fork on a
different register of l−qubits. It is possible to show that this yields the following
state:

1

2T

2T−1∑

c=0

(
1√
T

T−1∑

i=0

α⌊
c

2il
⌋%2l |i〉 |ψi〉

)
|c〉 ,

where
∥∥∥α⌊

c

2il
⌋%2l

∥∥∥
2

corresponds to the probability of measuring
∣∣⌊ c

2il
⌋%2

〉
=

|ci〉⊗l
in fork i. We observe that the |c〉⊗lT

= |c0〉⊗l |c1〉⊗l
. . . |cT−1〉⊗l

describes
the results of each T -forks in a single binary string. Eventually, we apply a
measurement on |c〉 in the computational basis (Fig. 1). The output probability
distribution peaks on the configuration |c0c1 . . . cT−1〉 with the most probable
outcome assignment for each fork by preparing the state |ψ〉 once.
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Fig. 2: Classification of samples s0, s1, s2, s3 with LQF.

3 Quantum Forking for AI

The forking framework provided by the LQF technique proves useful when (1)
we want to use a given quantum state |ψ〉 multiple times in the same circuit, (2)
the state preparation procedure for |ψ〉 is non-trivial, and (3) the number q of
qubits of the quantum state |ψ〉 is not negligible. Follows an use case.

Setting the stage. We employ LQF over a quantum distance-based clas-
sifier to retrieve the classification results of more samples at once. Let |D〉
be the initial quantum state encoding a dataset D = 〈X,Y 〉, where X =
{x1, x2, . . . , xn} is the set of training instances, and Y = {0, 1} is the set of
class labels. Eventually, let S = {s0, s1, s2, s3} be the set of samples to classify.
Therefore, the quantum distance-based classifier [8] assigns a class label ci to
sample si according to a weighting of the Euclidean distances between si and
the instances xj ∈ X.

Forking. In this setting, the LQF technique employs log2 |S| = log2 4 = 2
control qubits |d〉 = |d0d1〉 (i.e., a fork for each sample). By putting the two
control qubits into equal superposition, we create four forks of |D〉 in an elegant
and effective way. Each control qubits configuration (i.e., |00〉 , |01〉 , |10〉 , |11〉)
addresses a fork of |D〉: 1

√
4

∑3
i=0 |i〉 ⊗ |D〉. Since the set of labels |Y | consists

of two classes, the classifier requires a single qubit to encode the class labels.
Eventually, let |e〉 be an ancillary qubit necessary to compute the Euclidean
distances between all the instances xi ∈ X and each sample si ∈ S (Fig. 2).

Evolution. Let us amplitude encode [9] the samples in S = {s0, s1, s2, s3}.
Thus, let E(si) be a gate that encodes a sample si ∈ S. By controlling E(si)
along with |e〉 and each configuration |d〉 of the control qubits (i.e., |00〉, |01〉,
|10〉, |11〉), each fork of D independently evolves according to a specific input
E(si). Then, the last Hadamard gate on |e〉 and the post-selection on |e〉 = 0
compute the Euclidean distance on each fork of D. (Fig. 2).
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Fig. 3: Classification of samples s0, s1, s2, s3 with QFS.

Merging. In our use case, the measurements target only the qubits encoding
the assigned class labels and an ancillary qubit related to the Euclidean distance.
Right after the Evolution part, the qubit |c0〉 encodes the classification results
of the four samples (i.e., {s0, s1, s2, s3}) in superposition. In particular, |c0〉
is a 1-qubit register since l = log2(|Y |) = 1. Then, we add l(T − 1) = 3
ancillary qubits (respectively, c1, c2, c3), we apply a Hadamard gate to each
ancillary qubits, and we perform three controlled swap gates to store the results
on different qubits (Fig 2). Eventually, the measurement of c0, c1, c2, and c3
occurs. The configuration of c3c2c1c0 with the highest probability denotes the
output classification assignment of each sample s0, s1, s2, and s3.

4 Discussion

The Logarithmic Quantum Forking (LQF) technique turns out to be useful when
the number of forks and qubits encoding an initial quantum state are not neg-
ligible. In general, given: a quantum register of q qubits encoding an initial
quantum state |ψ〉, T different inputs to compute from |ψ〉, d = log2 T control
qubits, T quantum registers of l-qubits each, the total number of additional
qubits for LQF is d+ l(T −1). On the other hand, the QFS technique [6], under
the same assumptions, requires d+ q(T − 1) additional qubits. When l ≪ q, the
LQF technique provides an advantage by a factor of T (q− l) with respect to the
QFS technique since it forks an initial quantum state |ψ〉 by decoupling the size q
of |ψ〉 and the l-qubits needed to measure. Fig. 3 shows the circuit based on QFS
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to address the same use case presented in Section 3. The QFS technique requires
replicating the circuit of the Euclidean distance on each fork, thus, introducing
q(T − 1) additional qubits. Furthermore, utilizing QFS involves a postselection
for each |ei〉, where 0 ≤ i ≤ T − 1. This aspect significantly impacts the suc-
cess probability of a given run. In fact, according to [8], the success probability
of the postselection on a single |ei〉 is 1

2 (i.e., P (|e〉 = 0) = 1
2 ), therefore the

success probability of a given run decrease exponentially according to the for-
mula P (success)QFS =

∏T−1
i=0 P (|ei〉 = 0) = 1

2T
. Whereas, LQF performs the

postselection on the single |e〉, hence the success probability remains constant:
P (success)LQF = 1

2 .

5 Conclusion

In Quantum Artificial Intelligence (QAI), preparing an initial quantum state
|ψ〉 is crucial. AI algorithms typically require massive amounts of data, and
encoding it in a quantum state |ψ〉 can be costly. Moreover, each time a task
evolves |ψ〉, |ψ〉 has to be re-prepared. Hence, given that quantum memory is
not yet available, a new state preparation is required for each task. The LQF
technique resolves this issue by forking |ψ〉 to avoid redundant state preparations
for different tasks. LQF scales the number of forks of |ψ〉 exponentially in the
number of control qubits in a simple and effective way while serializing the
evolution of each fork. The LQF technique keeps the post-selection probability
of a quantum algorithm constant if any post-selection is present and reduces the
number of additional qubits compared to the state-of-the-art. Eventually, this
work provided the Qiskit implementations of LQF and QFS. Future works will
explore the applicability of LQF to other use cases.
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