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Abstract. Approximation problems, and thus regression problems, have
been widely considered as machine learning problems. A popular model to
tackle such tasks are radial-basis-function networks (RBFN) and variants
thereof. However, due to the global approximation scheme, RBFN, when
trained in a supervised manner without additional constraints, may lack
local representation. To this end, we propose approaches that aim to
preserve locality in terms of the regression problem by using the Neural
Gas algorithm. The models are tested on different data sets and compared
to the supervised RBFN approach.

1 Introduction

During the last years, machine learning methods became a promising alternative
to classical numerical methods for regression modeling. Thus, those approaches
can be seen as comparatively sparse approximation approaches realized by rather
small artificial neural networks [1], which constitute a network variant based on
the radial-basis-function network (RBFN) proposed by [2]. Generally, RBFNs
have become a popular tool for approximation-related tasks due to its spar-
sity and the fact that certain RBFs are universal approximators [1]. However,
to achieve this sparsity, RBFN requires RBF-centers that are similar to pro-
totypes from vector quantization (VQ). Therefore, VQ methods generally are
being considered to initialize or adapt these centers. Accordingly, prototype-
based regression models inherit the properties known from VQ methods and its
variations. Main advantages given by VQ are interpretability and robustness
[3, 4, 5], whereas black box models like multi-layer-perceptrons (MLP) are in
need of explainability. Yet, techniques to gain insight into a black box model
in terms of regression were recently proposed by [6] in which the restructuring
approach involves a reference point, which can in this regard be interpreted as
a prototype in the linear layer fulfilling certain rules. Nonetheless, when trained
in supervised (backpropagation) manner, i.e. with all necessary parameters ad-
justed, RBFNs tend to produce questionable prototype placements without ad-
ditional constraints on representation [2, 7], yielding a lack of interpretability
and transperancy. In this regard, we shall propose two models which aim to
keep an interpretable representation and, thus, locality. The respective models
are an supervised extension of the hybrid approach of Neural Gas (NG) which
was also used for function approximation [8]. In this work, we shall refer to two
approaches - the hybrid approach, which uses VQ as initialization and does not
adapt the prototypes based on the regression task, and supervised in which the
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placement is additionally influenced by the regression task and corresponding
parameters are accordingly adapted.

2 The Regression Problem

To clarify the notations we briefly describe the regression problem. For this
we assume, that we are given a training set T = {(x1, y1), ..., (xN , yN )} with
xi ∈ X ⊆ Rn and yi ∈ Y ⊆ R. The regression task can then be formulated as

yi = f(xi) + ϵi (1)

such that a target yj is supposed to be described by the function f(xj) and some
additive noise ϵi. However, in general little to nothing is known about f(·), and
thus the goal is to approximate this function using the information given by the
data X and the corresponding targets Y.

3 Neural Gas and its application in regression

We decided for NG as VQ model, since the approximation performance is known
to be superior compared to k-means and self-organizing-maps [8]. Here we will
use an unnormalized version of the original cost function given by [8]

CNG =
∑
k

∫
x∈X

hλ(x,pk,P)d(x,pk) (2)

for a prototype set P ⊂ Rn, the distance measure d(·), which is usually chosen
as the squared euclidean distance, and the neighborhood cooperativeness

hλ(x,pj ,P) = exp

(
−
rk(x,pj ,P)

λ(t)

)
with λ(t)

t→∞−−−→ 0 (3)

with rk(·) as a counting of the condition d(x,pj) ≤ d(x,pi) being satisfied. Ad-
ditionally, λ(t) models the visibility dependend on training time t. The authors
in [8] also applied NG to an approximation related problem - the prediction
of time-series data, which we will abreviate for distinction as NGTSP (Neural
Gas for time-series prediction). However, as already mentioned, the proposed
scheme is in a hybrid mode in which NG is used for the placement of the pro-
totypes and thereafter the following regression-based discretized cost function is
optimized:

CNGTSP =
∑
k

∑
i

hλ̂(xi,pk,P)(yi − πk(xi))
2 (4)

with

πj(x) = w⊺
j · (x− pj) + βj (5)
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such that (4) realizes an optimization of the mean squared error of the prediction
and (1) is approximated by a partition of f(·) via assigning each data sample to
its winning prototype, i.e. prediction is done locally through the winner-takes-all
(WTA) scheme

f(x̂) = πi(x̂) ⇐⇒ i = argmin
j

d(x̂,pj) (6)

which is in contrast to the global approach of RBFN, where every prototype

participates in the prediction. Further, the schedule for λ̂(t) in (5) does not
necessarily need to match the one of λ(t).

4 Extending NGTSP to a supervised scenario

To extend NGTSP from a hybrid into a supervised setting we follow the ideas of
[9] for an supervised extension of NG in terms of fuzzy-labeling and the consider-
ations of [10] for combining representation and supervised tasks. In consequence,
we need to balance between data representation and placing prototypes such that
prediction is optimized. We propose the following cost function

CRegNG = αCNG + (1− α)CReg (7)

and denote the corresponding model Regression Neural Gas (RegNG). Due to
space constraints, we refer the reader to [11] for a comprehensive description. In
(7) α ∈ [0, 1] is a parameter balancing representation costs by usual NG and the
regression costs

CReg =
∑
k

∑
i

gλ̂(xi,pk)(yi − π̃k(xi))
2 (8)

where gλ̂(·) is chosen RBF-like as described in [9] depending on the visibility

λ̂(t). The predictor π̃j(x) in (8) is defined as

π̃j(x) = w⊺
j · T (x) + βj (9)

in which we allow T (x) to be a transformation on x resulting in greater flexibility
for the approximation. For example, T (x) = (x − p) would correspond to
(5), whereas T (x) taken as a polynomial transform of x yields a non-linear
approximation. Prediction is then done in the same manner as in (6). Yet,
another way to incorporate the information of the regression can be done through
the neighborhood cooperativeness (3). In this regard, we alter the counting to
not be dependent on the distances, but rather on their corresponding predictors,
i.e. the counting is now sensitive to the condition (π̃j(xi)−yi)

2 ≤ (π̃k(xi)−yi)
2

being satisfied. The resulting model is called regression-sensitive Neural Gas
(RegSeNG) with the cost function

CRegSeNG = αCRSNG + (1− α)CReg (10)

661

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



4.1 Relations between Learning Vector Quantization, supervised
RBFN and RegNG

Since the goal is to establish a VQ-based regression model using gradient tech-
niques, we may find parallels of learning vector quantization (LVQ), RegNG and
supervised RBFN (SRBFN). We consider the general expression of RBFN [1]

f(x) =
∑
k

ckG(x− pk) (11)

with G(·) being an arbitrary RBF centered at pk. When trained in supervised
gradient descent manner, the corresponding prototype or center updates are
influenced by their respective weights, i.e. for prototype pj the weight cj . This,
together with the fact, that cj is allowed to be negative, can be related to LVQ
schemes: LVQ models attract and repell prototypes based on certain rules, i.e.
attraction (repulsion) is realized through a match (mismatch) of classes, which
is expressed as positive (negative) sign [12]. An regression-based LVQ-variant
can be found in [13] which is called regression-LVQ (RLVQ). Hence, in this
regard, SRBFN consists of an attraction and repulsion scheme, but in terms of
regression and it can further be extended, showing that RBFN in special cases are
reducible to LVQ schemes [14]. However, when considering RegNG (RegSeNG)
we find that CNG (CRSNG) realizes the attraction, while CReg (8) corresponds
to repulsion. This can be verified by simple mathematical calculations, which
are dropped here due to the lack of space.

It should be emphasized that RegNG (RegSeNG) aims to place prototypes
in such a way that target trends are found with respect to the chosen transfor-
mation T (x). For example, assuming T (x) is linear, then the repulsion depends
locally only on the linearity of the targets within the responsibility area of the
prototypes. Nonetheless LVQ, SRBFN and RegNG might encounter represen-
tation problems [15, 7]. However, considering (7) we find that the balancing is
crucial to control representation and, if not chosen correspondingly, local opti-
mization might suffer.

5 Experiments1

For the experiments we have chosen the datasets California Housing2 (CH),
Breast Cancer Prognostic (wpbc)3 (BC), Diabetes4 (DB) and Wine Quality -
Red5 (WQ). In WQ we picked alcohol as the target and for BC we removed
the attributes ID, Outcome and Lymph Node status and for the target we took
the mean perimeter. All datasets were normalized, such that X ⊆ [0, 1]n and
Y ⊆ [0, 1]. No further feature extraction was applied. We ran each model with
5, 10 and 15 prototypes, respectively, and used an 5-fold cross validation. As

1A comprehensive overview of the experimental setting and results: https://github.com/
rmschubert/RegressionVQ

2https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
3https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic)
4https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
5https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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evaluation measures we decided for the average of the coefficent of determination
r2 and the standard error sep on the test sets. We compared our approaches to
the SRBFN with a gaussian-like RBF, in which we equipped each center with an
own parameter γ to determine the scaling and adapted both centers and scaling.
The other models for comparison are the soft-RLVQ [13], the NGTSP and a
variant of it in which we simply replace (x − p) in (5) by x which we call for
distinction xNGTSP. Futhermore, for Reg(Se)NG we used linear regression,
such that T (x) = x. All models were updated by using ADAM6 as gradient
descent technique.

Table 1: Average performance of the models per number of prototypes |P| and Dataset

DS |P| SRBFN RegNG RegSeNG

r2 sep r2 sep r2 sep

BC
5
10
15

0.97 ± 0.02
0.97 ±0.02
0.98 ±0.01

0.03 ± 0.01
0.03 ±0.01
0.02 ±0.01

0.94 ± 0.03
0.89 ±0.12
0.95 ±0.03

0.04 ± 0.01
0.05 ±0.02
0.03 ±0.01

0.90 ± 0.06
0.94 ±0.02
0.87 ±0.17

0.05 ± 0.02
0.04 ±0.01
0.05 ±0.03

CH
5
10
15

0.64 ± 0.01
0.65 ±0.02
0.65 ±0.02

0.01 ± 0.00
0.01 ±0.00
0.01 ±0.00

0.39 ± 0.25
0.36 ±0.28
0.40 ±0.23

0.01 ± 0.00
0.01 ±0.00
0.01 ±0.00

0.39 ± 0.30
0.36 ±0.28
0.37 ±0.26

0.01 ± 0.00
0.01 ±0.00
0.01 ±0.00

DB
5
10
15

0.51 ± 0.06
0.51 ±0.06
0.51 ±0.06

0.10 ± 0.02
0.10 ±0.01
0.10 ±0.01

0.51 ± 0.05
0.49 ±0.06
0.50 ±0.06

0.10 ± 0.01
0.11 ±0.01
0.10 ±0.01

0.50 ± 0.06
0.50 ±0.06
0.51 ±0.06

0.11 ± 0.01
0.11 ±0.01
0.11 ±0.01

WQ
5
10
15

0.72 ± 0.04
0.74 ±0.05
0.74 ±0.05

0.04 ± 0.00
0.03 ±0.00
0.03 ±0.00

0.67 ± 0.04
0.68 ±0.03
0.69 ±0.04

0.04 ± 0.00
0.04 ±0.00
0.04 ±0.00

0.67 ± 0.05
0.67 ±0.03
0.68 ±0.04

0.04 ± 0.00
0.04 ±0.00
0.04 ±0.00

DS |P| RLVQ NGTSP xNGTSP

r2 sep r2 sep r2 sep

BC
5
10
15

0.90 ± 0.02
0.90 ±0.04
0.91 ±0.03

0.74 ± 0.21
0.67 ±0.12
0.67 ±0.13

0.87 ± 0.04
0.84 ±0.06
0.75 ±0.22

0.07 ± 0.01
0.06 ±0.01
0.08 ±0.04

0.82 ± 0.08
0.85 ±0.02
0.68 ±0.17

0.07 ± 0.02
0.06 ±0.01
0.09 ±0.02

CH
5
10
15

0.51 ± 0.03
0.51 ±0.04
0.52 ±0.03

0.96 ± 0.08
0.87 ±0.10
0.93 ±0.01

0.33 ± 0.12
0.57 ±0.03
0.61 ±0.02

0.04 ± 0.01
0.01 ±0.00
0.01 ±0.00

0.42 ± 0.29
0.40 ±0.27
0.43 ±0.25

0.01 ± 0.00
0.01 ±0.00
0.01 ±0.00

DB
5
10
15

0.42 ± 0.07
0.43 ±0.08
0.43 ±0.08

1.97 ± 0.43
1.84 ±0.43
1.80 ±0.14

0.41 ± 0.08
0.49 ±0.07
0.46 ±0.06

0.13 ± 0.01
0.11 ±0.01
0.11 ±0.01

0.51 ± 0.05
0.48 ±0.06
0.48 ±0.06

0.10 ± 0.01
0.10 ±0.02
0.10 ±0.01

WQ
5
10
15

0.43 ± 0.07
0.46 ±0.07
0.44 ±0.08

3.25 ± 0.89
3.75 ±0.59
3.69 ±1.13

0.46 ± 0.06
0.51 ±0.07
0.56 ±0.04

0.06 ± 0.00
0.06 ±0.01
0.05 ±0.01

0.69 ± 0.07
0.72 ±0.04
0.71 ±0.04

0.04 ± 0.01
0.03 ±0.00
0.04 ±0.00

In Table 1 the results of the experiments are shown. We find that in some
cases it can already be sufficient to use a hybrid NG scheme, as the results for
NGTSP in the case of CH and xNGTSP for WQ are indicating. However, we
find that Reg(Se)NG are on par with SRBFN for DB and BC and at least close
for WQ. Nonetheless, both models show high deviations in certain cases for r2,
reaching in peak performance comparable results to SRBFN. These deviations
can be due to an inappropriate balancing and the constraint of the linear ap-
proximation, while additionally finding local trends, which must not transfer to
unseen data. This gives rise to varying definitions of T (x). Additionally, we en-
countered states for every supervised model in which some prototypes were not
representive. However, in Reg(Se)NG this can be circumvented with a dataset
specific balancing, yielding direct control over the optimization and representa-
tion, while SRBFN need to be additionally modified [7].

6https://arxiv.org/abs/1412.6980
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6 Summary and Outlook

We could show that a local approach to combine VQ and supervised (linear)
regression could keep up with the performance of SRBFN in certain cases. How-
ever, further investigations can be concerned with different definitions of T (x)
or prototype pruning and adding to reduce the dependency on the balancing,
as it was proposed for (S)RBFN as well [1]. This can easily be integrated due
to the WTA-rule (6) for prediction. As it was contemplated by [16] a weighted
norm instead of the squared euclidean norm could be used. Together with the
regression-based representation, this can be considered as relevance learning in
VQ [17].
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