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Abstract. This paper is an effort to parameterize Information
Bottle-neck Theory to become a supervised classifier. We introduce a
parametrization by means of Learning Vector Quantization. With this
new approach, one can find suitable components that are necessary for an
accurate, yet efficient, classification. A balance between compression and
representation is made by means of a specially designed objective function.

1 Introduction

Learning Vector Quantization (LVQ) methods [1, 2] are effective classifiers that
naturally compress data. However, LVQ methods are often limited by their
architecture that lacks flexibility. There has been efforts [3, 4] to make LVQ
methods more flexible by allowing prototypes to represent more than one class.
In this paper, such flexible prototypes are called components. The flexibility of
components in LVQ may cause instability in learning. In case of Classification-
by-components (CbC) [4], modified CbC [5] redefines the reasoning parameters
for a more stable learning process. Nonetheless, both CbC and the modified
version depend on initialization of the components.

Given the mentioned problems, it is important to define a suitable objective
function as well as a suitable adaptation mechanism in order to obtain a model
with self-sufficient feature extractor. Also, we need to start the learning process
with many components and drop the components that contribute less, as we
train the model, to discover better components. One possible solution is using
Information Bottleneck Theory (IBT) [6] as a general probabilistic framework
for LVQ. IBT is a general method for compressing data, while keeping as much
relevant information as possible. IBT optimizes an objective function that makes
a careful trade-off between compression and distortion using mutual information.
However, optimizing the parameters of IBT has remained a challenging task [7],
despite of the fact that IBT algorithm has been proven to converge to a local
optimum. Deterministic Information Bottleneck (DIB) [8] is a variant of IBT
that uses a deterministic mapping from the input space to the compression
space. However, the deterministic assignment of input to the components space
limits the flexibility of the model and we would like to have a soft assignment.
Therefore, neither IBT nor DIB is a perfect fit for LVQ.

Inspired by IBT and DIB, we propose a special information theoretic frame-
work for LVQ. We introduce an objective function that is more suitable for LVQ.
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The optimal assignment from input space to the compression space is a soft as-
signment. The new method is called Information Theoretic LVQ (ITLVQ).

In the rest of the paper, an introduction to IBT and DIB is provided in
section 2. In section 3, we develop ITLVQ, that is LVQ in context of IBT.
Section 4 contains the simulations. Finally, in section 5, the paper is concluded.

2 Information Bottleneck Theory for Data Classification

C. Shannon [9] has given a general information-theoretic framework for com-
pressing data efficiently. However, in the context of classification, compressing
the data to keep the most relevant information to the final classification requires
a slightly different approach. Tishby et al. [6] introduced Information Bottle-
neck Theory (IBT) that is a general probabilistic method to compress data,
while keeping the maximum information. Given an input space X , and a dis-
crete target space Y = {y1, . . . , yc}, IBT codes X into a compression space K,
such that K preserves the maximum information about Y . The probabilistic
mapping from the input space X to the compression space K is denoted by the
conditional probability p(k|x), where x ∈ X and k ∈ K. The probabilistic map-
ping from the compression space K to the output space Y is denoted by p(y|k).
The objective function of IBT is

FIBT (p(k|x)) = I(X,K)− β · I(Y,K) (1)

where I(., .) is the mutual information and β is the rate-compression trade-off
parameter. Finally, in order to find the optimal solution to the above objective
function, Tishby et al. [6] include an iterative algorithm

pd(k|x) = pd(k)
Zd(x,β)

· exp(−β ·DKL[p(y|x), pd(y|k)])
pd+1(k) =

∑
x p(x) · pd(k|x)

pd+1(y|k) = 1
pd+1(k)

∑
x p(y|x) · pd(k|x) · p(x)

(2)

that estimates all the necessary parameters at time step t based on the optimal
mapping pd(k|x) that appears in the first line in (2). Note that Zt(x, β) is a
normalization factor and DKL[., .] is the Kullback-Leibler divergence between
two distributions. Furthermore, p(y|x) = [p(y1|x), . . . , p(yc|x)]T and p(y|k) =
[p(y1|k), . . . , p(yc|k)]T are distribution vectors such that the elements of each
vector sum up to one. Also, the following probabilities are defined. p(x) is
the marginal probability that the input x occurs. p(k) =

∑
x p(x) · p(k|x) is

the marginal probability of component k ∈ K. p(y) =
∑

k p(k) · p(y|k) is the
probability of the output y ∈ Y .

Deterministic Information Bottleneck (DIB) [8] modifies the objective of IBT
(1) to have FDIB(p(k|x)) = H(K)− β · I(Y,K). The optimal mapping p(k|x) of
DIB is the hard assignment f(x) = argmaxk

(
log p(k)−β ·DKL[p(y|x), p(y|k)]

)
.

376

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



3 Information Theoretic LVQ

In this section, we introduce Information Theoretic LVQ (ITLVQ) based on the
notions of IBT and DIB. ITLVQ will have a recursive learning algorithm based on
a limited number of components. We assume that a training set T = {(xi, yi)}τi=1

is given, such that xi ∈ Rn and yi ∈ C = {1, 2, . . . , c} for all i. We would also
like to start with a number m of components W = {wi}mi=1, such that wi ∈ Rn

for all i. The following Bayesian probabilistic predictor for the class j ∈ C of
input x is defined

pW (j|x) =
∑
t

p(wt|x) · p(j|wt) (3)

where we have assumed that the components W provide sufficient statistics for
the input space to predict the class of the input data (the Markov condition),
so we can use p(j|wt) instead of p(j|wt, x) in (3). The relation

∑
j pW (j|x) = 1

must hold true.
In order to parameterize the notions of IBT and DIB for an LVQ method,

we define the representation function st(x) : W × Rn → [0, 1], such that st(x) is
a parametric measure of the assignment p(wt|x). We require

∑
t st(x) = 1 for all

x. We also define the representation vector s(x) = [s1(x), . . . , sm(x)]T .
We continue by defining a suitable objective function for ITLVQ with in-

spiration from objective functions of IBT and DIB. Basically, we would like an
objective function that is the sum of two terms, where one takes care of com-
pression and the another takes care of representation. The trade-off between
compression and representation is regulated by a parameter β. The objective
function of ITLVQ for a training pair (x, y) is defined as below.

FITLV Q = Cr

[
p(W |x), 1

γ
p(y|W )

]
+β ·DKL

[
p(W |x), s(x)

]
−
∑
t

λ · p(wt|x) (4)

where Cr[., .] is the cross entropy between two distributions. We also have
p(W |x) = [p(w1|x), . . . , p(wm|x)]T , p(y|W ) = [p(y|w1), . . . , p(y|wm)]T , and γ is a
normalizing factor, since the elements of p(y|W ) may not add up to one. The
last term

∑
t λ · p(wt|x) in (4), with positive Lagrangian multiplier λ, enforces

the normalization of parameter p(wt|x). We expand (4) for a better explanation
below.

FITLV Q = −
∑
t

p(wt|x) · log
1

γ
p(y|wt) + β ·

∑
t

p(wt|x) · log p(wt|x)

− β ·
∑
t

p(wt|x) · log st(x)−
∑
t

λ · p(wt|x) (5)

In (5), −
∑

t p(wt|x) · log 1
γ p(y|wt) makes sure that maximum compression

is achieved by mapping a data x to a component wt that has the maximum
probability 1

γ p(y|wt), where y is the true class of x. The term
∑

t p(wt|x) ·
log st(x), on the other hand, tries to maximize representation by mapping a
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data point x to the closest component wt, based on the representation function
st(x). We would also like to minimize the uncertainty of the mapping p(wt|x) by
minimizing the entropy

∑
t p(wt|x) · log p(wt|x). We find the optimal assignment

rule in the following theorem.

Theorem 1. The optimal assignment, based on objective function (4), for a
training pair (x, y) is

p∗(wt|x) = N · p
1
β (y|wt) · st(x) (6)

where N =

(
eλ−β

γ

) 1
β

is a normalization factor and e is the Euler constant.

Proof. We start from (5) and take the gradient with respect to p(wk|x) and set
it equal to zero.

∂FITLV Q

∂p(wk|x)
= − log

p(y|wk)

γ
+ β · (1 + log p(wk|x))− β log sk(x)− λ = 0

The above equation is solved for p(wk|x).

p∗(wk|x) =
(
eλ−β

γ

) 1
β

· p
1
β (y|wk) · sk(x) (7)

We often have a limited number of components W in LVQ for a fast and
computationally efficient learning. Therefore, it would be beneficial to be able
to adapt the component for an optimal result. Based on the optimal component
assignment (6), we may find the gradient of objective (4) with respect to a com-
ponent wk, assuming that only representation functions st(x) explicitly depend
on wk.

∂FITLV Q

∂wk
= −β ·

∑
t

p∗(wt|x)
st(x)

· ∂st(x)
∂wk

(8)

Then, we write the above gradient for all x in the training set to have the
following average update for components, where ϵ is a small learning rate.

wk(new) = wk(old) + ϵ · β ·
∑

x

∑
t

p∗(wt|x)
st(x)

· ∂st(x)
∂wk

(9)

The learning algorithm of ITLVQ, similar to the recursion (2), is as bellow,
where the order of learning is the same as the order in which the relations appear.

p∗(wk|x) := N · p
1
β (y|wk) · sk(x)

p(wk) :=
∑

x p
∗(wk|x) · p(x)

p(j|wk) :=
1

p(wk)
·
∑

x p(j|x) · p∗(wk|x) · p(x)
wk := wk + ϵ · β ·

∑
x

∑
t
p∗(wt|x)
st(x)

· ∂st(x)
∂wk

(10)
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Note that, unlike (2), in (10) we used ”equal by definition” symbol := to
drop the time step indicator d of the quantities in the iteration,

The parameter β controls the level of compression during learning. When
β is small the compression rate is higher, since all data points x with class y
tend to be mapped to more dominant prototypes wk that have higher value
of p(y|wk). Consequently, some components may become obsolete, since they
do not receive much assignment from the input space based on the optimal
assignment rule (6). The average assignment for components is calculated in
the parameter p(wt) in (10). Therefore, during learning, a component wt may
be discarded from the set of components W if the value of p(wt) is lower than
a specific threshold, that we call the pruning threshold θ. On the other hand,
as β goes to infinity, almost all the components are used for prediction. Also,
the optimal assignment becomes limβ→∞ p∗(wk|x) = sk(x), which is substituted
in (3) to have the practical predictor of ITLVQ as pW (j|x) =

∑
t st(x) · p(j|wt).

Therefore, in practice one needs to start from a small β and slowly increase β
to a relatively large number during training. Note that the practical predictor
is a manifestation of Recognition-by-Components [10]. Basically, wt is a basic
component and representation level st(x) determines how much of the component
is observed in x. Then, the correlation p(j|wt) is evaluated as a way to measure
a correlation between class j and component wt.

4 Experiments and Simulations

We apply ITLVQ to the Two-Moons data set. We start with 20 randomly initial-
ized components. The trade-off β starts at 0.1 and it is increased slowly every
iteration as long as the value of β remains less than 5. We used the following

representation function: sk(x) = exp(−σ·||x−wk||2)∑
t exp(−σ·||x−wt||2) with σ = 5. The pruning

threshold is set to θ = 0.5
m , where m is the number of remaining components at

the time. After 50 iterations, we are often left with 4 components. The result
is shown in the left image of figure 1, where components (blue dots) 1 and 2
represent the purple class and components 3 and 4 represent the yellow class.
The classification accuracy on test data is 100%. The right image in figure 1 is
the result of setting the initial β = 1 and θ = 0.3

m . The classification accuracy
is 100% and we are often left with 9 to 13 components in the end. Then, we
applied ITLVQ to MNIST data set. For σ = 15, 40 initial components, and
initial β = 0.2, we achieve an average 89.5% classification accuracy with 10 fi-
nal components. The result is similar to CbC without CNN feature extractor.
The pruning threshold is θ = 0.5

m . To increase the accuracy, we used Siamese
networks with CNN to learn a suitable representation function st(.). The CNN
consists of two layers of CNN: the first one has 64 filters of size 5 × 5 and the
second has 32 filters of size 5 × 5 and both layers use tangent hyperbolic acti-
vation function. Also, both layers use 2 × 2 pooling grid. Since we are using
deep networks as representation function, we will have to drop the component
update during learning (last line in (10)), because the gradient of the learnt st(x)
with respect to wk has to be numerically estimated and it is computationally
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Fig. 1: Two Moons Results

hard. Instead, we start with 10 random samples for each class from training
set as components and drop components with p(wt) less than threshold θ = 0.2

m .
We also have β = 0.005 and slowly increase it. After 10 rounds of training, we
often end up with 10 to 15 components and an average accuracy of 99.1%. This
result is an improvement when compared to an average of 97.9% accuracy that is
achieved by the same setting, with the difference that 1 component is randomly
chosen and fixed for each class.

5 Conclusion

In this paper, we defined LVQ in framework of IBT for classification purposes.
This approach helps LVQ to extract most effective components for classifica-
tion. Different levels of compression can be achieved using a trade-off parameter
between compression and representation.
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