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Abstract. Deploying reinforcement learning agents in the real world
can be challenging due to the risks associated with learning through trial
and error. We propose a task-agnostic method that leverages small sets
of safe and unsafe demonstrations to improve the safety of RL agents
during learning. The method compares the current trajectory of the agent
with both sets of demonstrations at every step, and filters the trajectory
if it resembles the unsafe demonstrations. We perform ablation studies
on different filtering strategies and investigate the impact of the number
of demonstrations on performance. Our method is compatible with any
stand-alone RL algorithm and can be applied to any task. We evaluate our
method on three tasks from OpenAI Gym’s Mujoco benchmark and two
state-of-the-art RL algorithms. The results demonstrate that our method
significantly reduces the crash rate of the agent while converging to, and
in most cases even improving, the performance of the stand-alone agent.

1 Introduction

Reinforcement learning (RL) [1] enables agents to learn how to behave in an
environment through trial and error, but safety concerns have limited RL de-
ployments to simulations. Ensuring safety in unknown environments remains a
challenge in RL, particularly in safety-critical domains such as healthcare and
autonomous driving. To address these issues, safe RL studies the RL problem
subject to certain constraints, with the agent aiming to maximize task reward
while limiting constraint violations. However, deploying agents with complete
knowledge of the environment to perform their tasks is unrealistic. Alterna-
tively, in demonstration learning (DL) the agent learns from expert demonstra-
tions without direct environment interaction. However, the quality of the data
set plays a crucial role in the performance. Due to the difficulty of collecting a
demonstration data set that covers the entire state space, pure DL policies often
underperform compared to RL policies.

In this paper, we propose a novel task-agnostic algorithm that enhances
existing RL algorithms by promoting safety during interactions with the en-
vironment. Our algorithm uses a small data set of good and bad demon-
strations to filter unsafe actions, terminate episodes with unsafe trajectories,
and encourage the agent to explore different trajectories. We conduct abla-
tion studies to evaluate filtering strategies and demonstrate the utility of our
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method on four tasks from OpenAI’s MuJoCo environment. Our contributions
in this paper are: (1) enhancing RL algorithms with safety filtering, (2) perform-
ing ablation studies on filtering strategies, (3) demonstrating the utility of our
method on OpenAI’s MuJoCo tasks, and (4) providing the code implementation:
https://github.com/meowatthemoon/DEFENDER.

2 Related Work

Reinforcement learning has gained significant attention in recent years due to its
wide range of applications. However, its trial-and-error nature can pose safety
risks.One approach to safe reinforcement learning is to keep the agent within a
safe distribution of states. For example, [2] proposes learning a manifold that
captures natural variations in the environment and uses a secondary policy to
bring the agent back into the distribution of visited states. Safety can be achieved
through specification of constraints. For instance, [3] proposes learning a barrier
function that constrains the agent’s policy to stay within a set of states that
do not violate constraints. Alternatively, [4] propose a zero-sum game where a
second player perturbs the transition probabilities of the agent to optimize the
worst transitions to produce a more robust policy. Some methods leverage a
data set of expert demonstrations. [5] proposes learning a Lyapunov function
that ensures the agent’s policy remains within the distribution of states of the
data set. In [6], the authors use a pre-existing expert policy to filter the agent’s
action if it differs from the expert’s. Our method uses a demonstration data set
to improve safety and does not require access to task constraints or an expert.

3 Preliminaries

3.1 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique that enables an
agent to learn to act in an unknown environment through trial-and-error interac-
tions. RL is often formulated as a Markov Decision Process (MDP) described by
the tuple < S,A,R, P, γ > [1], consisting of states s ∈ S, actions a ∈ A, transi-
tion function P (st+1 | st, at), reward function rt = R(st, at) and discount factor
γ. At each timestep t, the agent receives the state st, selects an action at = π(st)
based on its policy, receives a reward rt = R(st, at), and transitions to a new
state st+1 with probability P (st+1 | st, at). A trajectory τ is a sequence of states
and actions. The goal of RL is to learn a policy π that produces trajectories τ

that maximize the expected return Eπ[Rτ ]. Standard RL algorithms optimize a
policy to maximize the expected rewards disregarding any safety concerns.

3.2 Dynamic Time Warping

Dynamic Time Warping (DTW) [7] measures the similarity between two se-
quences of temporal data, allowing for distortions in time and variations in
speed. Making it particularly useful for comparing sequences with different
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Algorithm 1 RL loop with DEFENDER enhancement

Input: Policy π; Memory β; Dynamics θ; Constant Rtask; Alignment cost
functions: Safe, Unsafe; Task environment Env.
while EPISODE not DONE do

a← π(s)
τ ∪ s or (s, a)
if Safe(τ) < Unsafe(τ) then
s′, r, done = Env(a)

else
s′, r, done = θ(s, a), Rtask, T rue

end if
β ← (s, a, r, s′)
Optimize π and θ

end while
return π

lengths, speeds, or underlying shapes. In practice we use FastDTW [8], an ap-
proximate to DTW with reduced time and memory costs. The algorithm finds
the optimal warping path which minimizes the cumulative distance between
corresponding points on the two sequences. The alignment cost of the path
measures the similarity between two sequences.

4 Proposed Approach

We propose DEFENDER: DTW-Based Episode Filtering Using Demonstra-
tions for Enhancing RL Safety, a method to improve the safety of any RL al-
gorithm during learning by leveraging limited demonstration data sets without
task-specific constraints. The algorithm keeps track of the current trajectory
which is either the sequence of states or state-action pairs. We performed ab-
lation studies to evaluate the type of trajectory which results in better perfor-
mance. We assume access to a demonstration data setDdemo = {τi}N containing
N demonstrations, where N > 1 is potentially a small number that would not
suffice for demonstration learning. The data set must contain both safe and un-
safe trajectories. Unsafe trajectories terminated due to reaching unsafe states.
Safe trajectories do not have to be perfect but must avoid unsafe states.

DEFENDER measures the alignment cost of the current trajectory at every
step with each demonstration from both groups using the DTW algorithm. If
the trajectory aligns better with the unsafe group the episode is terminated and
the agent is discouraged from re-sampling this trajectory. If the trajectory is
terminated, the agent must be encouraged not to sample the same action that
would have caused termination for the state. Otherwise, the agent will try again.
A negative reward is assigned to discourage sampling the same action again. We
use the lowest reward from the reward function of the respective task.

RL algorithms use the next state to perform temporal learning. Since the
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Table 1: Performance, safety and computation time of SAC and TD3 agents
enhanced with our algorithm using different filters for state trajectories.

Algorithm
Hopper InvertedDoublePendulum Walker2d

Acc Reward % Crash % Time Acc Reward % Crash % Time Acc Reward % Crash % Time
SAC 3474±85.0 64±6.0 100 9359±0.2 14±2.7 100 3326±254.6 40±4.0 100

MinDemoW5 MinDemoW10 50±4.0 3±0.2 143 9357±1.5 1±0.2 144 4149±106.3 3±0.6 157
MeanBothW5 MeanBothW5 3557±50.8 9±0.3 119 9357±0.7 21±0.6 121 4178±53.7 8±0.3 122
MeanBothW10 MeanBothW10 3500±16.4 8±0.7 138 9357±0.3 20±0.8 141 4215±76.9 12±0.5 150
MeanDemoW5 MeanDemoW10 3600±11.9 11±0.8 143 9357±0.6 22±1.5 144 4281±23.2 13±0.1 156
MinDemoW10 MinDemoW10 1±0.0 0±0.0 152 9356±1.5 1±0.0 157 3998±105.1 3±0.4 168

TD3 2561±1311.6 93±9.9 100 9355±0.2 47±7.9 100 4783±230.9 35±8.2 100
MinDemoW5 MinDemoW10 49±9.9 8±1.7 198 9353±0.4 2±0.2 184 4978±119.1 6±2.5 221
MeanBothW5 MeanBothW5 3652±67.4 16±1.9 143 9352±1.4 62±3.3 139 5122±30.3 13±4.1 147
MeanBothW10 MeanBothW10 3690±55.2 14±1.0 188 9352±1.1 55±0.5 177 5159±102.0 15±3.0 204
MeanDemoW5 MeanDemoW10 3821±47.1 15±0.2 198 9351±0.5 58±1.5 184 5263±138.4 18±2.0 218
MinDemoW10 MinDemoW10 1±0.0 0±0.0 219 9350±0.9 3±0.5 208 4571±67.5 5±1.6 242

filtered action is not performed, the agent does not transition to the next state.
We propose predicting the next state using a dynamics model pθ(st+1 | st, at).
The dynamics model is a simple fully-connected feed-forward network with two
hidden layers parameterized by θ trained with L2 loss to imitate the true tran-
sition function of the MDP. DEFENDER is summarized in Algorithm 1.

5 Filtering Strategies

We evaluated different filtering strategies for DEFENDER. One compares the
current trajectory with the complete demonstration. A second compares the
trajectory with the demonstration using an equal length window. For instance,
if the current trajectory has length L, we compare the trajectory with the last
L transitions of the demonstration. We also test using a fixed window of 5
and 10 transitions applied to only the trajectory, the demonstration and both.
After computing the cost between the trajectory and each demonstration, we
obtain a set of values for each group. We test selecting the minimum, maximum
and average value from each set. This results in 24 methods to compare the
trajectory with a group of demonstrations. We can use one method to compare
the trajectory with the safe demonstrations and another method to compare it
with the unsafe demonstrations, resulting in 576 filtering strategies.

To determine the best filtering strategy, we trained a SAC agent on three
tasks and saved the transitions of the episodes. We simulated how the agent
would perform the episodes with each strategy. For each episode, we measured
its length with the filter active and divide it by the length of the episode without
the filter. We also determined if the filter prevents a crash. At the end, we
obtained the average episode length percentages and multiplied it by the safe
episode rate. We ranked the strategies by the average score for the three tasks,
and selected the top 5 strategies for both state and state-action trajectories.

6 Experiments

In this section, we evaluate the effectiveness of our method in enhancing the
safety of the underlying RL algorithms, SAC [9] and TD3 [10]. We selected three
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Table 2: Performance, safety and computation time of SAC and TD3 agents
enhanced with our algorithm using different filters for state-action trajectories.

Algorithm
Hopper InvertedDoublePendulum Walker2d

Acc Reward % Crash % Time Acc Reward % Crash % Time Acc Reward % Crash % Time
SAC 3474±85.0 64±6.0 100 9359±0.2 14±2.7 100 3326±254.6 40±4.0 100

MeanBothW5 MeanBothW5 3475±17.7 9±0.8 119 9357±0.5 21±1.4 120 4207±32.8 11±1.0 123
MeanBothW10 MeanBothW10 3486±17.0 8±0.1 141 9356±0.2 21±1.0 141 4261±13.0 14±0.4 155
MinTrajW5 MinTrajW10 1±0.0 0±0.0 1119 8±0.0 0±0.0 728 -4±0.0 0±0.0 1642
MinBoth MinTrajW10 3602±0.0 53±8.4 602 201±4.3 1±0.1 196 3878±0.0 24±4.3 824
MinBoth MinTrajW5 3443±13.1 11±0.2 460 189±19.2 1±0.2 179 3944±91.7 29±9.2 621

TD3 2561±1311.6 93±9.9 100 9355±0.2 47±7.9 100 4783±230.9 35±8.2 100
MeanBothW5 MeanBothW5 3645±29.8 14±1.1 143 9351±0.9 59±12.8 139 5196±55.0 17±2.4 149
MeanBothW10 MeanBothW10 3651±35.1 15±1.5 193 9351±0.3 58±5.2 178 5253±78.2 17±1.9 216
MinTrajW5 MinTrajW10 1±0.0 0±0.0 2442 8±0.0 0±0.0 1297 -4±0.0 0±0.0 3345
MinBoth MinTrajW10 3759±0.0 60±0.3 1253 204±7.5 0±0.0 282 4991±0.0 13±2.2 1623
MinBoth MinTrajW5 3849±0.0 68±0.3 928 167±0.0 0±0.0 251 5220±37.3 13±3.4 1196

Table 3: Performance and safety of SAC agent with DEFENDER using and
MeanDemoW5 and MeanDemoW10 filters, varying number of demonstrations.

#Demonstrations
Hopper InvertedDoublePendulum Walker2d

Acc. Reward % Crash Acc. Reward % Crash Acc. Reward % Crash
10 3541±25.2 16±0.8 9356±0.2 22±2.1 4225±46.2 14±0.9
20 3529±13.5 13±1.1 9356±0.8 22±1.7 4259±26.6 13±1.1
50 3600±11.9 11±0.8 9357±0.6 22±1.5 4281±23.2 13±0.1

tasks from OpenAI Gym: Hopper, Inverted Double-Pendulum, and Walker2d.
The episode horizon for these tasks is 1000 steps, but an episode can end early
if the agent reaches an unsafe state, leading to a crash if the transition was not
filtered. We measured the performance and safety of RL agents by accumulated
reward and crash rate, respectively. Agents were trained for 5000 episodes,
and each experiment was repeated three times for seed dependency. We used a
learning rate of 3−4, batch size of 256, and all the networks have 2 hidden layers
with 256 neurons each. We used 50 demonstrations for both safe and unsafe
groups, obtained by training a SAC agent and generating a demonstration after
every episode. These tasks are non-visual, however DEFENDER can be applied
to visual tasks by utilizing an image encoder to convert images into features.

We trained SAC and TD3 agents with and without our algorithm, using the
top 5 filtering strategies from the ablation study for both state and state-action
trajectories. Results are shown in Tables 1 and 2. Our algorithm incurs extra
computational cost which we present in the tables. Overall, both SAC and TD3
agents vary consistently across filtering strategies for the same task. Results
show that state trajectories are preferred over state-action trajectories. Not
only are they less computationally expensive, but they consistently lead to far
fewer crashes for the same task and filtering strategy. Some filtering strategies
are too strong and prevent the agent from interacting with the environment and
learning the task. Those that allow the agent to interact with the environment
lead the agent to the same performance in the case of InvertedDoublePendulum
and to higher performance in the case of Hopper and Walker. More importantly,
the crash rate is significantly decreased with some exceptions in the Inverted-
DoublePendulum task. With an appropriate filtering strategy, DEFENDER is
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able to significantly reduce the crash rate. However, selecting a good filtering
strategy for the task may require some trial and error.

Lastly, we evaluated the impact of the number of demonstrations on the per-
formance by training an agent with DEFENDER using ’MeanDemoW5’ for the
safe set, and ’MeanDemoW10’ for the unsafe set as the filtering strategy, varying
the number of demonstrations. Results are shown in Table 3. DEFENDER is
able to increase the agent’s safety with small data sets, and it can be further
improved by increasing the demonstration data set size.

7 Conclusion

In this paper, we introduced the DEFENDER algorithm that can be integrated
with any RL algorithm for improving the safety of agents during learning. Ab-
lation studies helped identify effective filtering strategies, which we evaluated
on state-of-the-art RL algorithms and multiple tasks. The results demonstrate
significant enhancement in the safety of the learning agent while maintaining
or improving performance. However, there is room for improvement, as the
filtering strategy may be overly protective for certain tasks, requiring many it-
erations to select an appropriate strategy. Our work highlights the potential of
using demonstrations for task-agnostic enhancement of RL algorithm safety.
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[6] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the fourteenth
International Conference on Artificial Intelligence and Statistics, 2011.

[7] Richard Bellman and Robert Kalaba. On adaptive control processes. IRE Transactions
on Automatic Control, 4(2), 1959.

[8] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear time
and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning. PMLR, 2018.

[10] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning. PMLR, 2018.

308

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.


	AllPapers
	Thursday
	ES2023-97-4





