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Abstract. The promise of quantum computation to achieve a speedup
over classical computation led to a surge of interest in exploring new quan-
tum algorithms for data analysis problems. Feature Selection, a technique
that selects the most relevant features from a dataset, is a critical step in
data analysis. With several Quantum Feature Selection techniques pro-
posed in the literature, this study exhibits the potential of quantum al-
gorithms to enhance Feature Selection and other tasks that leverage the
variance. This study proposes a novel quantum algorithm for estimating
the variance over a set of real data. Importantly, after state preparation,
the algorithm’s complexity exhibits logarithmic characteristics in both its
width and depth. The quantum algorithm applies to the Feature Selec-
tion problem by designing a Hybrid Quantum Feature Selection (HQFS)
algorithm. This work showcases an implementation of HQFS and assesses
it on two synthetic datasets and a real dataset.

1 Introduction

With quantum computation promising a speedup over classical computation,
exploring new quantum algorithms for known problems becomes crucial. In this
work, we consider the Feature Selection problem [1], a data analysis technique
that identifies and selects the most relevant features from a dataset. This tech-
nique minimizes computational costs by discarding the less relevant features
when creating models from a given dataset.

Several Quantum Feature Selection algorithms have been recently proposed
in the literature [2–4]. Among the Feature Selection techniques [5], here we
focus on an unsupervised Feature Selection method, i.e., a method that does
not use explicit target labels or class information to select the relevant features.
In particular, we consider a Feature Selection technique for numerical variables
based on removing features whose variance is below a given threshold [6]. More
precisely, we propose a novel quantum algorithm (QVAR) for estimating the
variance over a given set of values. Then we apply it to the problem of Feature
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Fig. 1: Quantum circuit for variance estimation.

Selection by designing a Hybrid Quantum Feature Selection (HQFS) algorithm
based on the variance filter [7]. Eventually, we showcase an implementation of
the HQFS algorithm, assessing it on two synthetic datasets and a real dataset.

The work is organized as follows. Section 2 describes the quantum variance
estimation algorithm, while in Section 3, we show our quantum Feature Selec-
tion algorithm. Section 4 reports experimental simulations. Finally, Section 5
summarizes the results obtained and proposes possible future works.

2 Quantum Algorithm for Variance Estimation

Given a set D = {d0, d1, . . . , dN−1} of N real values, we encode D into a quan-
tum state |D〉 by means of FF-QRAM [8], one of the currently available state
preparation techniques. In particular, FF-QRAM encodes the values dt ∈ D in
the amplitude of a one-qubit register |r〉, and employs n = log2N additional
qubits to index each value. We design the algorithm for the variance estimation

according to the following formula for the variance: σ2 =
∑

N−1

t=0
(dt−µD)2

N
, where

µD = 1
N

∑N−1
k=0 dk is the mean of the values in D.

This algorithm requires in total 3n+2 qubits. Figure 1 illustrates the quan-
tum circuit implementing the variance estimation algorithm. Due to space lim-
itations, the formal proof of correctness will be given and discussed in the ex-
tended version of this paper. Here, we only provide the key steps involved in
the algorithm. Let us prepare an ancilla qubit |a〉, a register qubit |r〉, and

three quantum registers |i〉⊗n, |e〉⊗n, and |q〉⊗n in the following quantum state:

|ψ0〉 = |0〉a |0〉
⊗n
e |0〉⊗nq |0〉⊗ni |0〉r . Then, we encode D into a quantum state |D〉

by means of FF-QRAM:

|ψ1〉 =
1

√

2n
|0〉

a
|0〉⊗n

e
|0〉⊗n

q

N−1
∑

t=0

|t〉
i
|dt〉r ,
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where |dt〉 corresponds to the quantum state encoding the value dt [9]. We
create an equal superposition with the first H gate on |a〉. Then, we compute
the mean µD in the branch where |a〉 = 1. In the end, we apply another H gate
on |a〉 to cause each |dt〉r stored in the branch where |a〉 = 0 to collide with the

mean µD. Finally, the H gates on |q〉⊗n result in the actual sums between each
dt. Before measurement, the final state considering the configurations where
|ae⊗nq⊗n〉 = |11⊗n0⊗n〉 is:

1

2
√
N

|1〉a |1〉
⊗n

e |0〉⊗nq

(
1√
N

N−1∑

t=0

|t〉i |dt〉r −
1√
N

N−1∑

t=0

|t〉i
1

N

N−1∑

k=0

|dk〉r

)

=
1

2N
|1〉a |1〉

⊗n
e |0〉⊗nq

N−1∑

t=0

|t〉i

(
|dt〉r −

1

N

N−1∑

k=0

|dk〉r

)
.

Eventually, we perform a post-selective measurement on qubits |ae⊗nq⊗nr〉 =
|11⊗n0⊗n1〉, which succeeds with probability

Psucc =
1

4N2

N−1∑

t=0

(dt −
1

N

N−1∑

k=0

dk)
2, (1)

which corresponds to the variance of D, divided by 4N . The cost of the actual
computation of the variance using the circuit in Figure 1 is O(logN) both in
terms of width and depth, excluding the cost of data encoding. However, since
the success probability corresponds to the variance of D when the variance is
low, the success probability of the required post-selection step is also low. More-
over, since the variance derives from a probability and therefore depends on the
amplitudes of the final quantum system, the number of circuit repetitions (shots)
required to accurately estimate the variance should be large. In particular, from
the Chebyshev inequality follows that the number R of shots needed to derive a
quantum estimate of the variance within an error ǫ from the classical one grows

with O(ǫ−2) with probability (1− δ), where δ = Psucc(1−Psucc)
Rǫ2

.
An effective solution to this problem is to use the Amplitude Estimation

(AE) [10] subroutine, which easily addresses the issue. We call QVAR the al-
gorithm which exploits AE to encode the amplitude of the target configuration
over m additional qubits in the computational basis, where m = O(log 1

ǫ
). This

value of m sets the precision of the estimation. In our case, we employ AE to
estimate the amplitude of the target configuration |ae⊗nq⊗nr〉 = |11⊗n0⊗n1〉
by measuring the m additional qubits. The measurement output represents an
approximation of the variance in the computational basis. In general, the depth
of AE is O(δ 1

ǫ
+ log log 1

ǫ
) [11] where δ is the depth of the oracle. In our case,

δ = O(logN), assuming the existence of an efficient quantum state preparation
technique. Thus, the overall complexity of QVAR is O(logN), and the number
of qubits is m + log2N . We can increase the precision of QVAR by interpo-
lating the measurement probabilities and computing the maximum likelihood
estimator (we call this method ML-QVAR) [12].
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3 Hybrid Quantum Feature Selection

This section presents the Hybrid Quantum Feature Selection (HQFS) algorithm,
which exploits the variance estimation techniques, QVAR and ML-QVAR.

Setting the stage. Given a multidimensional dataset D ∈ R
N×M with

N records and M features, we denote as Di,j the j-th feature value of the
i-th record. The HQFS algorithm iterates over the features and computes the
variances σ2

j = variance(d0,j , · · · , dN−1,j) for j ∈ [0, · · · ,M−1]. HQFS employs
a distinct QVAR circuit for each feature j to calculate each variance. In total,
HQFS uses M QVAR circuits, one for each feature. Then, HQFS drops all
features whose variance is below a given threshold t.

Algorithm 1 HQFS
Input: D - input dataset, t - variance threshold
Output: F - list of selected features

F ← [f0, · · · , fM−1] // list of selected features initially containing all features

for j ∈ [0, · · ·M − 1] do // classically iterate among all feature

σ2

j
← QV AR(D:,j) ; // compute the variance using the QVAR algorithm.

if σ2

j
≤ t then // check if feature fj is uninformative

F ← F \ {fj} ; // remove feature fj to the list of selected features

return F ; // return the list of selected features

We can use either the QVAR or ML-QVAR as a variance estimation method.
The complexity of Algorithm 1 is O(M logN) if we assume available efficient
methods for reconstructing the initial state. Using the Qiskit framework by
IBM, we implement two versions of HQFS based on the variance estimation
methods provided, HQFS and ML-HQFS, respectively1.

4 Experiments

We conduct the experiments using the qasm simulator of Qiskit, which simu-
lates the quantum circuits using classical hardware. Before assessing the HQFS
algorithm, we compare the QVAR and ML-QVAR algorithms with the classical
variance on 5 sets of 8 random uniform values in the range [-1,1]. In Figure 2,
we plot the Mean Squared Error (MSE) with respect to the classical variance,
varying the number m of additional qubits.

We then evaluate the performance of HQFS and ML-HQFS on two synthetic
datasets and a real dataset by varying the parameter m. We assess our results
by comparing the similarities of the final ranking of features of HQFS and ML-
HQFS with respect to the ranking from the classical variance. To measure
the similarity between the rankings, we use the Rank Biased Overlap (RBO)
measure [13], which weights the ranking similarity on the top ranks and takes
value in [0,1]. A high value of RBO corresponds to a high similarity on the top
ranks.

1Code publicly available at https://github.com/AlessandroPoggiali/HQFS
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Fig. 2: MSE for QVAR and ML-QVAR with respect to the classical variance.

Dataset. For the experimental evaluation of HQFS, we consider two syn-
thetic datasets (synth 1 and synth 2), and the real dataset wine. Both syn-
thetic datasets have N = 32 records andM = 10 features: 7 informative features
with high variance and 3 uninformative features with low variance, which are
not expected to provide useful information for the analysis. The informative
features are sampled from uniform distributions in [-1,1], while the uninforma-
tive features are sampled from two normal distributions with low variance. In
particular, the uninformative features for synth 1 are sampled from a normal
distribution with a standard deviation of 0.05. In contrast, the uninformative
features for synth 2 are sampled from a normal distribution with a standard
deviation of 0.5.

synth 1

m HQFS ML-HQFS

2 0.05 0.37

3 0.05 0.35

4 0.05 0.37

5 0.15 0.99

6 0.43 0.98

synth 2

m HQFS ML-HQFS

2 0.21 0.20

3 0.21 0.20

4 0.21 0.20

5 0.27 0.20

6 0.31 0.37

Table 1: RBO measures on synthetic
datasets.
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Fig. 3: Features selected by ML-
HQFS on wine dataset.

Results. In Table 1, we report the HQFS and ML-HQFS results on synth 1

and synth 2 datasets. To mitigate the high computational cost of simulation,
we test the algorithm with a maximum value of m = 6. However, theoretical
analysis suggests that increasing the value of m can yield superior results. We
note that ML-HQFS performs better than HQFS for synth 1 datasets. However,
the RBO measure is unsuitable for the synth 2 dataset because the variance of
the uninformative features is high, and then the algorithm fails to distinguish
between informative and uninformative features. If we are only interested in
recognizing uninformative features, we see that ML-HQFS always gets an accu-
racy of 100% while the accuracy of HQFS ranges from 30% to 80% depending
on the number m of additional qubits. In Figure 3 we show how the ML-HQFS
algorithm (with m = 6) behaves on the real dataset wine, sampling randomly
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16 records 25 times. The figure shows that ML-HQFS selects the same feature
as the classical algorithm.

5 Conclusion

In this paper, we proposed a novel quantum algorithm (QVAR) for estimating
the variance of a superposition of values. As a use case, we designed an efficient
Hybrid Quantum Feature Selection (HQFS) algorithm that exploits the quan-
tum variance estimation through the Amplitude Estimation subroutine. The
experiments have shown that QVAR outputs a good estimate of the classical
variance if the number of additional qubits is properly chosen. Therefore, the
final ranking of features produced by HQFS is similar to the ranking produced
by the classical algorithm, especially considering low-variance features, meaning
that HQFS correctly eliminates uninformative features. Possible feature works
include applying the QVAR algorithm to other tasks that leverage the variance.
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