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Abstract. This paper explores utilizing an encoder-decoder neural ar-
chitecture for unsupervised representation learning of mixed asynchronous
data, presenting the jmetts (Joint Modelling of Event Traces and Time
Series) model. Our goal is to forecast short-term multivariate time series
within event contexts. As a proof of concept, we examine a real-world case
in digitally assisted training for anaesthesiology. jmetts demonstrates
high predictive performance, with a maximum prediction error percentage
of approximately 5.5%, comparable to that of its only competitor pub-
lished to date. The source code can be found at https://github.com/

jp3142/jmetts_models_and_pipeline.

1 Introduction
Time series data are ubiquitous thanks to widely deployed sensors. This has
prompted a notable increase in time series forecasting research, particularly for
multivariate time series (mts). However, events occurring in the studied dynam-
ical systems or in their surrounding contexts often determine the evolution of the
mts variables observed. Nowadays, event traces (ets) are collected along with
mtss in an increasing number of systems. This opens unparalleled prospects to
explore new frameworks for event-contextualized mts forecasting.

Over the last decade, there has been a surge in research on joint modelling of
time series and time-to-event data in the very specific domain of survival analysis.
Surpringly, despite the opportunities that technological sensor capabilities open
up, and despite the considerable research attention given to mts forecasting,
we did not find any work in the realm of machine or deep learning, specifically
targeting event-contextualized mts prediction [1]. The autoregressive Markov
chain-based solution of [5] is an exception to this rule. The present work in-
troduces the jmetts (Joint Modelling of Event Traces and Time Series) model,
and thus investigates the viability of using a variant of the rnn (Recurrent Neu-
ral Network) encoder-decoder model for simulating physiological variables in a
digital patient undergoing anaesthesia, in response to medical actions.
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Fig. 1: An anaesthetic profile. Events are shown in red, in the top section.

2 Preliminaries

2.1 Mixed asynchronous data

The data available for our modelling problem consist of “anaesthetic profiles”
{Z,E}, where Z = [z1, z2, · · · z`Z ] is an mts of dimension dv and length `Z . The
observations in Z are regularly sampled. We denote by τt ∈ R+ the (continuous)
timestamp of observation zt at discrete time t. We assert that an history E =
[(e1, t1), · · · (e`E , t`E ], built on a finite set of ne event categories C , may impact
the behavior of Z. Given t and t′ (1 ≤ t < t′ ≤ `Z), we denote by Zt′

t the vector
[zt, · · · zt′ ] and by Et′

t the subsequence of E whose events ei verify τt ≤ ti ≤ τt′ .
Figure 1 displays such an anaesthetic profile.

2.2 Task definition

In our application, we will update the evolution of an mts each time a medical
action occurs. Hence, our problem focuses on short-term prediction. Given a
prediction horizon h, a parameter k defining the size of the past from which
the prediction is made, and an anaesthetic profile {Z,E}, we wish to design a
function to model the probability distribution p(Ẑt+h

t+1 |Zt
t−k+1, Et

t−k+1).

3 The JMETTS model
In many applications, we need to predict an output sequence Y as a complex
function of an entire input sequence X. To achieve this goal, the rnn encoder-
decoder (ed) architecture, initially proposed for natural language processing
[2, 3], relies on two separate components: the encoder’s role is to “encode”
a variable-length source sequence X of size `X into a fixed-dimensional repre-
sentation denoted as the context vector C(X); then, the decoder initiates the
“decoding” of C(X) into the variable-length predicted sequence Ŷ , of size `Y
(usually different from `X).

3.1 From mixed asynchronous data to merged data

The data fed to the jmetts model is obtained by preprocessing anaesthetic pro-
files {Z,E}, following 4 steps. Normalization first rescales the dv variables of
Z to [0, 1], using Min-Max scaling. We obtain Znorm. Secondly, synchroniza-
tion produces Esync, a univariate categorical time series of same length as Z; it
is built on C ∪{ε}, where ε denotes the “No Event” category. We assume that at
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most one event can occur in time interval [τt, τt+1[. If it exists, this single event
is aligned with t; otherwise, ε is aligned with t. Thirdly, one-hot encoding
maps Esync to the numerical mts of dimension ne + 1, denoted as Eenco, where
each element is a vector filled with zeroes, except a 1 at the position specific to
an event category. Finally, we move a sliding window of size k + h (see Section
2.2) along Znorm and Eenco in parallel, to create the training pairs {X,Y }:

X = Λt
t−k+1, Y = Λt+h

t+1 , k ≤ t ≤ `Z − h,
with λi = [znormi,1 , · · · , znormi,dv

, eencoi,1 , · · · , eencoi,ne+1], λi ∈ [0, 1]dv+ne+1.

This stated, we will simply refer to X = [x1, x2, · · · , xk] and Y = [y1, y2, · · · , yh].

3.2 JMETTS workflow

Both the encoder and decoder in jmetts are stacked lstms where Long Short
Term Memory units recurrently update two hidden states, ct and ht. In a stacked
lstm, each layer is fully connected to its adjacent layer: all the lstm units in
the same layer process the same inputs in parallel at each time step t.

During the training process of the ed model, the source sequence is the
encoder’s input sequence X ∈ [0, 1]k×(dv+ne+1), whereas the target sequence
corresponds to the ground truth sequence Y ∈ [0, 1]h×(dv+ne+1) that we aim to
predict (Ŷ ). The encoder and the decoder are trained jointly to maximize the
conditional probability p(Ŷ | X).

Figure 2 shows how the jmetts model operates, to generate Ŷ conditionally

on X. In the decoder, all lstm units in first layer have their initial states (h
(0)
d,1

and c
(0)
d,1 ∈ Rdh) initialized using the final states (h

(k)
e,2 and c

(k)
e,2) of encoder’s

last layer (shown with red arrows). In the learning and inference tasks, the
information generated by the encoder’s last layer at final time step k, that is

the y
(k)
e,2 outputs, defines the context C(X) ∈ Rdh . The decoder waits for the

encoder to process the entire sequence Xk
1 before it starts decoding it using

context vector C(X). This summarized information about X is duplicated as
many times as there are time steps in the decoder (h). Hence, at each time
step in the decoder, the input of each of the lstm units in the first layer will
be fed with the context vector (shown with blue arrows). This represents an
alternative approach to the data flow management described in the pioneering
ed models [3, 2] where the decoder operates autoregressively using ŷt−1 as input

(along with C(X)), to generate ŷt. The predicted sequence is y
(1)
d,2, y

(2)
d,2 · · · y

(h)
d,2 .

3.3 Loss function

We devised a loss function that combines standard mean squared error (mse)
and standard categorical cross-entropy (cce): Ψ = ν mse+cce, where ν is used
to take account of the difference in scale between mse and cce.

4 Experimental study

4.1 Experimental settings

Anaesthesia dataset Our dataset describes laparoscopic inguinal hernia surg-
eries for 1,000 men around thirty, without any prior medical history. This surgery
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Fig. 2: Operational framework of the jmetts model. Top section: lstm unit
(dark green) unfolded in time (light green). Bottom section: jmetts model with
2 recurrent layers in both encoder and decoder. k = 4, h = 3, dh = 5.

involves 35 possible medical acts. We considered 4 physiological variables: heart
frequency (hf); systolic, average and diastolic blood pressures (sbp, abp, dbp).

Preliminary analysis We wished to gather insights to guide the choice of
architecture and hyperparameter setting for further analysis. We combined the
18 architectures described in Table 1 with 24 hyperparameter adjustments. We
varied 4 hyperparameters: gradient descent optimization algorithm ∈ {Adam,
Nadam, Adamax}; network weight initialization ∈ {Glorot Uniform, Glorot Nor-
mal}; batch size ∈ {32,64} and learning rate ∈ {10−4, 10−3}. We kept the values
of 4 other hyperparameters constant: k = 10, h = 10; number of epochs: 40 and
Dropout / Recurrent dropout: None. We drew a subset of 200 patients from the
initial dataset and divided it into 5 equal folds. We then applied a 5-fold cross-
validation scheme to each of the 432 model instances analyzed. For each instance,
we computed the prediction performance using criterion Ψ (Section 3.3), aver-
aging results across the 20 models trained within the cross-validation scheme.
The hyperparameter ν (Section 3.3) was empirically calibrated to 100.

Refined analysis We examined 15 hyperparameter adjustements: learning
rate ∈ {10−4, 2.5 × 10−4, 5 × 10−4, 7.5 × 10−4, 10−3} and k ∈ {10, 20, 30}. We
kept the values of the 6 other hyperparameters constant: optimization: Adamax;

EmDn Numbers of nodes in encoder (in bold characters) and decoder layers

E2D2 [440,440,440,440] [440,220,220,440] [880,440,440,440]
E3D2 [440,440,440,440,440] [440,220,110,110,440] [880,440,220,220,440]
E3D3 [440,440,440,440,440,440] [440,220,110,110,220,440] [880,440,220,220,440,440]
E4D2 [440,440,440,440,440,440,440] [440,220,110,55,55,440] [880,440,220,110,110,440]
E4D3 [440,440,440,440,440,440,440] [440,220,110,55,55,220,440] [880,440,220,110,110,220,440]
E4D4 [440,440,440,440,440,440,440,440] [440,220,110,55,55,220,440] [880,440,220,110,110,220,440]

Table 1: The 18 architectures considered in the preliminary study. m: number
of layers in encoder. n: number of layers in decoder.
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weight initialization: Glorot Uniform; batch size: 32; h = 10; number of epochs:
40 and Dropout / Recurrent dropout: None. We used the same cross-validation
scheme as previously, starting this time from the dataset of 1,000 patients.

Comparison with baselines Our first baseline is nhmc-ar [5]. Alternatively,
the phmc-mlar model [4] can be used to suit our objective, if we map its
partially observed states to events [5]. We used the standard Mean Absolute
Percentage Error (mape) to compare the models’ mts predictive performances.

We calculated an average mape for the jmetts model, using the 5-fold cross-
validation scheme applied to the dataset of 1,000 patients. The mape values
relative to phmc-mlar and nhmc-ar were obtained from prior experiments [5]
performed on the anaesthesia dataset partitioned into training, validation, and
test sets, comprising 500, 200, and 300 patients, respectively. Model preselection
based on bic score was applied to the training set, and model selection based on
mape criterion was performed on the validation set.

4.2 Results

Impact of architecture and four hyperparameters On the anaesthesia
dataset, increasing the number of layers decreases the predictive performance of
jmetts. In constrast, we found no discernible impact of the number of nodes on
the performance of jmetts. On the other hand, we observed that the six best
EmDn model instances share the same hyperparameter setting by an overwhelm-
ing majority. These results recommend choosing the simplest configuration for
the refined study, that is the parsimonious architecture E2D2, with 440 lstm
units in each layer, Adamax optimization, uniform Glorot initialization, and a
batch size of 32. This instance is referred to as jmetts∗ hereafter.

Impact of hyperparameter k and learning rate Increasing the value of k
clearly enhances the predictive performance of jmetts∗ by a ratio of at least 1.5
between k = 10 and k = 30. Among the 15 hyperparameter settings examined,
the performances with k = 30 ranked 1st to 4th and 9th, while those obtained
with k = 20 ranked 5th to 8th and 10th. In contrast, fine-tuning the learning
rate is not influential. Finally, we have retained the model trained with k = 30
and a learning rate of 10−3, leaving other hyperparameters unchanged, as the
best jmetts model for comparison with the baselines.

Comparative analysis The two hyperparameters of the nhmc-ar and phmc-
mlar models are the number of states q in the Markov process and the au-
toregressive order r in the time series. nhmc-ar(q = 4, r = 5) and phmc-
mlar(q = 6, r = 2) obtain the lowest mape values on the anaesthesia dataset.

Table 2 shows that hf is the best predicted variable by all 3 models. There
is a noticeable discrepancy between jmetts and nhmc-ar, on one side, and
phmc-mlar, on the other. The mape values reach up to around 7 to 9%,
and even reach 11% (dbp) for phmc-mlar. In contrast, jmetts and nhmc-
ar exhibit high and comparable performances, which remain consistently stable
across all horizons for both models, predominantly falling between 4.5 and 5.5%.
Moreover, the performance of jmetts is consistently slightly higher than that
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Variable Model
Prediction horizons

1 2 3 4 5 6 7 8 9 10
phmc-mlar 3.5 4.6 5.0 5.5 6.0 6.1 6.2 6.5 6.7 6.9

hf nhmc-ar 3.6 3.8 4.2 4.5 4.6 4.7 4.9 5.0 5.1 5.1
jmetts 2.4 2.7 2.9 3.1 3.3 3.4 3.6 3.8 3.9 4.1

phmc-mlar 5.1 6.6 7.4 7.9 8.1 8.3 8.5 8.8 8.8 8.8
sbp nhmc-ar 4.4 4.9 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8

jmetts 3.7 4.0 4.3 4.6 4.8 4.9 5.1 5.3 5.4 5.6
phmc-mlar 6.3 7.9 8.4 8.9 8.9 9.0 9.1 9.1 8.9 8.2

abp nhmc-ar 4.9 5.4 5.6 5.7 5.7 5.6 5.6 5.4 5.1 5.0
jmetts 3.7 4.2 4.6 4.9 5.1 5.3 5.5 5.7 6.0 6.2

phmc-mlar 5.5 7.0 8.1 8.3 8.4 9.4 9.8 11.1 11.1 11.0
dbp nhmc-ar 4.4 4.8 5.0 5.0 5.0 5.0 4.7 5.1 4.7 4.6

jmetts 4.3 4.5 4.7 4.8 4.9 4.9 4.9 5.0 5.0 5.0

Table 2: Comparison of the mape values of jmetts, nhmc-ar and phmc-mlar
obtained for the anaesthesia dataset. mape values are expressed in percentages.

of nhmc-ar (except for abp at horizons 8 to 10), and the difference is relatively
marked for hf, across all horizons (ranging from 1.0 to 1.4%).

The positive outcomes from jmetts allow us to validate both the dataflow
management specified in our ed framework and the design of the composite loss
tailored for multimodal data, on the anaesthesia dataset. One limitation may
arise from the need to calibrate the hyperparameter ν associated with this loss
function. Further investigations are required to relax the restriction of observing
at most one event occurrence between two consecutive time steps.

5 Conclusion and future work
The proof-of-concept study outlined in this paper demonstrates the applicability
of jmetts for time series prediction dedicated to data-driven simulation of a dig-
ital patient’s vital signs. Future work will explore whether integrating attention
mechanisms into jmetts, inspired by transformer neural networks, can sustain
good predictive performance as the number of variables and events increases.
We will assess jmetts and its future enhancements across various surgeries.
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