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Université de Toulouse, 10 avenue Edouard Belin, 31400, Toulouse - France

2- A&O - LISN - Université Paris-Saclay
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Abstract. Code modulated Visually Evoked Potentials (cVEP) is an
emerging paradigm for Brain-Computer Interfaces (BCIs) that offers re-
duced calibration times. However, cVEP-based BCIs still encounter chal-
lenges related to cross-session/subject variabilities. As Riemannian ap-
proaches have demonstrated good robustness to these variabilities, we
propose the first study of deep Riemannian neural architectures, namely
SPDNets, on cVEP-based BCIs. To evaluate their performance with re-
spect to subject variabilities, we conduct classification tasks in a domain
adaptation framework using a burst cVEP open dataset. This study
demonstrates that SPDNet yields the best accuracy with single-subject
calibration and promising results in domain adaptation.

1 Introduction

Code modulated Visually Evoked Potentials (cVEP) have gained popularity in
the Brain-Computer Interface (BCI) community [1]. This approach employs
pseudo-random visual flickers, providing advantages such as shorter calibration
times, as only one code needs to be learned. Alternative decoding methods, like
bitwise-decoding [2], have enabled self-paced BCI with flexible decoding period.
Despite these advancements, cVEP-based BCIs remain primarily studied in lab
settings due to the persistent need for recalibration before each use. This lim-
itation is related to cross-session and cross-subject variabilities common to all
BCI paradigms. These sources of variability in BCI are diverse [3], encompass-
ing anatomical differences such as variations in grey matter quantity, human
factors like differences in education level and lifestyle habits, or physiological
factors like fatigue, concentration levels, and stress levels. Additionally, neu-
rophysiological disparities, such as variations in modulations of spectral power
across specific frequencies, also contribute to these variabilities. To address these
sources of variability, extensive research has been conducted [4, 3] to propose
new approaches. There are two main settings for evaluating transfer learning
approaches, depending on the quantity of information available for a target sub-
ject. In the most independent setting, refer to as Domain Generalization, no
information from the target subject is at hand thus the model is trained on data
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from n-1 subjects and tested on the n-th (target) subject. If some information
could be obtained from the target subject, the so-called Domain Adaptation set-
ting uses a small portion of the n-th subject’s data for training [5]. In the context
of Deep Learning (DL) algorithms, the model could be initially trained on n-1
subjects, followed by freezing one or more layers and retraining the model on the
data from the last subject [6]. To achieve reasonable performances in DG/DA
settings, an important preprocessing step is data alignment, which aims to align
the data from all subjects to ensure a similar feature space across subjects [5].
While these settings have shown promise in addressing inter-subject variability,
there is still room for improvement in terms of accuracy and robustness. In this
context, Riemannian geometry has emerged as a powerful tool for enhancing the
performance of BCIs. Riemannian techniques have the ability to capture the
intrinsic structure of the data on a curved manifold, enabling more effective and
efficient classification algorithms [7, 8]. Moreover, recentering the data before
classification has been proven to enhance accuracy when using transfer learning
techniques [9].

In this study, we propose a novel approach that adapts Riemannian deep
learning model, namely SPDNet, for cVEP-based BCIs to address cross-subject
variability. We aim to compare our method with state-of-the-art CNN model
for cVEP in terms of accuracy and robustness across subjects. For this study,
we adapted SPDNet [10] and its batch normalization version [11] (SPDBNNet)
for a cVEP dataset [2] with 12 participants. We evaluated these models on two
different transfer learning settings: Domain Generalization (DG) and Domain
Adaptation (DA). They are compared with Single Subject (SS) training baseline
(no transfer learning), where one model per subject is trained with longer cali-
bration phase than DA. In the following sections, we will first provide in Sect. 2
some preliminaries to redefine key definitions of Riemannian manifolds and con-
text related to the cVEP. Next, we will present in Sect. 3 the methodology used
in our study, followed in Sect. 4 by the results obtained and the implications of
our findings. Finally, we conclude the paper with Sect. 5.

2 Preliminaries

2.1 Riemannian manifold

Let Pn be the set of the n × n symmetric definite-positive (SPD) matrices :
Pn : {P ∈ Rn×n, P⊤ = P, u⊤Pu = 0, ∀u ∈ Rn} endowed with the affine-
invariant Riemannian (AIR) distance. While other distance could be considered,
the properties of the AIR and the Frechet mean (center of mass of a SPD ma-
trices) are interesting for processing EEG and their definition can be found in
[8],[7]

2.2 cVEP and Burst cVEP

Code modulated VEP relies on pseudo-random code of 0s and 1s, often referred
to as an m-sequence or Gold codes, and is generated using a linear feedback
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shift register. Once the initial sequence is produced, the subsequent sequences
are then generated by phase-shifting this initial sequence. Indeed, it is cru-
cial for these sequences to be as uncorrelated as possible to ensure a maximal
discriminability between the sequences. The burst cVEP is a variation of the
cVEP. Burst cVEP employs short bursts of irregular visual flashes at a slower
rate [2]. This method evokes a distinct brain response, known as P100 (i.e., a
positive deflection that occurs 100 ms after the brief burst of flash) with dou-
ble the amplitude of classical cVEP m-sequences, as shown in Figure 1. Those
clearer responses to onsets facilitate the detection and classification of the code.
Additionally, those code could be more comfortable for the user, as it is possible
to reduce the flash amplitude, generating thus less visual fatigue in response to
those rapidly blinking stimuli.

Fig. 1: cVEP relying on m-sequence or burst. Left: The black line illustrates
a prototypical m-sequence cVEP, animating the presentation of the flash with
alternating plateaus of ’1’ (flash on) and ’0’ (flash off). The red line represents
the averaged and normalized cerebral response to this alternating on/off visual
stimulation. Right: Example of Burst cVEP graphs, consisting of brief flash pre-
sentations. The blue line depicts the averaged and normalized cerebral response
to this alternating on/off visual stimulation. Adapted from [2]

3 Material and Method

3.1 Datasets

The data used for this study come from the dataset created with the study of
Cabrera-Castillos et al.1 [2]. In this experiment, 12 participants were instructed
to concentrate on four targets cued sequentially for 2.2 seconds in random order
for each of 15 blocks (60 trials in total). To retrieve the dataset easily and to
facilitate the reproducibility of this study, we have implemented this dataset in
MOABB [12].

3.2 Method

The emergence and advantages of Riemannian methods in recent years have
led to significant improvements in the performance of BCIs, particularly in the

1available at https://zenodo.org/record/8255618
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context of motor imagery tasks [8]. However, there have been relatively few
studies exploring the potential of Riemannian classifiers in the domain of cVEP-
based BCIs. Motivated by this gap in the literature, we sought to investigate
the performance of Riemannian classifiers (3 layers of BiMap-ReEig, followed
by a LogEig layer, a flatten and a Linear layer; for the SPDBNNet, the batch
normalisation layers are not domain specific) in comparison to a state-of-the-art
deep learning algorithm, an optimized CNN which has demonstrated excellent
results for Burst cVEP [2].

We evaluated different settings for transfer learning, namely domain general-
ization and domain adaptation. Let k be the target participant index (evaluated
in testing set) and I = [1, ...12] the participants’ index. For domain generaliza-
tion, let be ΩDG

S = {Xi,∀i ∈ I\k} the training set with Xi the data of the
i-th participant. The model is trained on ΩS and tested on the testing set
ΩDG

T = {Xk}. In Domain Adaptation setting, a subset XDA
k ∈ Xk of trials from

subject k are available in ΩDA
S = ΩDG

S ∪XDA
k and, indeed, excluded from testing

set ΩDA
T = ΩDG

T \XDA
k . In this study, XDA

k are the first 16 (out of 60) trials
of Xk, representing roughly 32 sec of calibration for a subject. The baseline is
a single subject setting, using XSS

k 32 (out of 60) trials for training, that rep-
resents a circa 110s calibration to train a subject/session-specific model. For
the training we used the following parameters : lr=0.001,optimiser=Adam or
RiemannianAdam,loss=CrossEntropy,epochs=20,batchsize=64.

All channels of the 32-electrode EEG cap are used, EEG data is bandpass
filtered between 1-25 Hz, and the signals are re-referenced to the average. Epochs
were created by extracting 0.25s windows following each frame and labeling them
with the corresponding bit of the code. For the Riemannian algorithms, a spatial
XDAWN filter, on class 1, is estimated and applied before computing covariance
matrices with Ledoit-Wolf estimator. A recentering step is applied to whiten the
covariance matrices. For the CNN, the data were normalized as commonly done
with neural nets and a recentering step is applied too. Due to the unbalanced
nature of Burst cVEP, the dataset has circa 4.85 times more 0 than 1. To address
this imbalance, we randomly removed 0-labeled epochs to match 1-labeled epochs
in training set. We did not balance the testing set, to reflect situation occurring
in a real world online BCI application. To avoid bias, we repeated 10 times the
process of each pipelines and then average the different scores.

4 Results and discussion

The statistical differences shown in this section are obtained via the Stouffer’s
method that combines p-values resulting from the Wilcoxon signed-rank test.
Then a Bonferroni correction was performed.

Figure 2 illustrates the performance comparison of different DL models in
different settings. The DA setting exhibits significantly higher accuracy than
DG setting(p ⩽ 0.05) but, no difference is found between DG and SS setting
or between DA and SS setting. This result is something in contrary to what
we expected compared to other studies. There are much more training samples
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Fig. 2: Average accuracy scores for all subjects (10 repetitions). The box range
is between the first and third quartile. The black line in the box is the median
and the dark color square point is the mean

in DG and DA settings than in SS setting. It can explained that SS setting is
not significantly higher. It indicates that riemannian algorithms and the CNN
performs equally well between the settings.

When comparing the same setting (DG/DA/SS) across different models, all
three models show comparable performance without significant differences, with
one exception: in the SS setting, the CNN and the SPDBNNet achieves better
accuracy than the SPDNet. Notably, we successfully matched the accuracy of an
optimized CNN using Riemannian DL models, achieving very good performance
(circa 93% accuracy). It should be noted the hyperparameters of the CNN are
well optimized as reported in [2], while we did not conduct any hyperparameter
search for Riemannian DL models, it is thus likely that the SPDNets could
match the CNN performances when carefully tuned. Indeed, we will conduct
such optimization and propose an ablation study in a near future.

However, although the CNN appears more consistent across different set-
tings, it exhibits more outliers compared to the SPDNet and SPDBNNet. This
indicates a preferable behavior for the Riemannian DL models in a context of
transfer learning. These results were obtained by predicting a code in a fixed
time window of less than 2 seconds. For instance, the mean prediction time
for SPDBNNet in the SS settings was 1.438 seconds, while for CNN in the SS
settings, it was 1.458 seconds. However, it is important to note that the training
time of SPDBNNet is longer than that of SPDNet, which was 1.442 seconds,
which in turn is longer than the training time of the CNN.
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5 Conclusion

This article presented two Riemannian deep learning (DL) models that were on
par with the state-of-the-art model in terms of accuracy and decision time for
cVEP-based BCIs. These models were more robust to outliers and had better
accuracy for the lowest-performing subjects. This first study, which employed
a vanilla SPDNet architecture without optimization, showed promising results.
We plan to work on more complex approaches for transfer learning to tackle
cross-subject variabilities. In this study, we restricted our analysis to cross-
subject evaluation, but we are confident that cross-session evaluations for a given
subject might greatly benefit from these findings.
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