
Reservoir Memory Networks

Claudio Gallicchio and Andrea Ceni ∗

Department of Computer Science, University of Pisa
Largo Bruno Pontecorvo 3 - 56127 Pisa, Italy

Abstract. We introduce Reservoir Memory Networks (RMNs), a novel
class of Reservoir Computing (RC) models that integrate a linear mem-
ory cell with a non-linear reservoir to enhance long-term information re-
tention. We explore various configurations of the memory cell using or-
thogonal circular shift matrices and Legendre polynomials, alongside non-
linear reservoirs configured as in Echo State Networks and Euler State
Networks. Experimental results demonstrate the substantial benefits of
RMNs in time-series classification tasks, highlighting their potential for
advancing RC applications in areas requiring robust temporal processing.

1 Introduction

Reservoir Computing (RC) [1] represents a powerful paradigm in the design of
Recurrent Neural Networks (RNNs), widely recognized for its efficiency and re-
duced training requirements. This approach is particularly relevant in the realms
of pervasive artificial intelligence (AI) and neuromorphic hardware implementa-
tions, where RC facilitates low-power, high-speed processing, aligning with the
goals of sustainable AI. Traditional RC architectures, however, often struggle
with processing sequences in tasks that require long-range retention of informa-
tion, a critical capability for many advanced AI applications. Recent studies
have shown that the integration of linear dynamical systems within RNNs can
significantly enhance the propagation of information across long sequences [2, 3],
providing a promising direction for overcoming classical RC limitations.

In this paper, we introduce a novel class of RC systems, the Reservoir Mem-
ory Networks (RMNs), which combine a linear memory cell with a non-linear
processing reservoir. This dual-reservoir approach aims to harness the strengths
of both linear and non-linear dynamics to efficiently manage long-term depen-
dencies. The efficacy of our proposed approach is empirically evaluated across
diverse time-series classification tasks.

2 Reservoir Computing

We start by introducing the Echo State Network (ESN) model [4], the most
widely known and used RC model in the literature. The architecture of an ESN
includes a fixed randomized recurrent hidden layer, called reservoir, paired with
a feed-forward trainable readout. To fix our mathematical notation, we use Nh

to indicate the number of reservoir neurons, and Nx for the number of input
features at each time-step (i.e., the dimensionality of the driving input signal).
Moreover, we use h(t) ∈ RNh and x(t) ∈ RNx , respectively, to denote the state

∗Work supported by EU-EIC EMERGE (Grant No. 101070918) and NEURONE, a project
funded by the Italian Ministry of University and Research (PRIN 20229JRTZA).

479

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

of the reservoir and the input at time-step t. Referring to the formulation of
leaky integrator neurons from [5], the operation of the reservoir can be described
mathematically by the following iterated map:

h(t) = (1− α)h(t− 1) + α tanh
(
Whh(t− 1) +Wxx(t) + bh

)
, (1)

where Wh ∈ RNh×Nh is the recurrent reservoir weight matrix, Wx ∈ RNh×Nx

is the input weight matrix, bh ∈ RNh is the bias vector, α ∈ (0, 1] is the leaking-
rate, and tanh(·) indicates the element-wise applied non-linearity.

An alternative approach to the design of the reservoir layer is provided by
the recently introduced Euler State Network (EuSN) model [6]. In this case, the
reservoir is derived by forward Euler discretization of a stable and non-dissipative
ODE, and implements the following iterated map:

h(t) = h(t− 1) + ε tanh
(
(Wh −WT

h − γI)h(t− 1) +Wxx(t) + bh

)
, (2)

where ε and γ are small positive hyper-parameters that respectively indicate the
time-step of integration and the diffusion coefficient.

The distinctive aspect of all the RC approaches is that the reservoir weights
are not trained, but initialized based on considerations of the nature of the
dynamic system being implemented by the reservoir layer. For ESNs, we impose
asymptotic stability constraints by means of the Echo State Property condition.
In practice, this corresponds to initializing the reservoir by controlling the largest
length of an eigenvalue in the recurrent weight matrix Wh, i.e., its spectral
radius ρ, which is typically set to a value smaller than 1, and is treated as a
hyper-parameter. The weights in Wh are randomly initialized from a uniform
distribution in (−1, 1) and then properly re-scaled to the desired value of ρ. On
the one hand, the ESN initialization provides stable dynamics in the state space,
allowing the use of untrained weights in the reservoir. On the other hand, this
type of initialization results in fading memory on the input signal and dissipation
of state information that makes it difficult to effectively propagate information
over time. In the case of EuSNs, the dynamical reservoir is constrained to
operate at the edge of stability by its architectural design that leverages the use
of an anti-symmetric recurrent weight matrix (i.e., Wh − Wh

T), forcing the
eigenvalues of the Jacobian in the continuous-time version of eq. 2 to lie on the
imaginary axis (see [6] for details). In practice, it is not necessary to control the
spectral radius of Wh in eq. 2, which is initialized randomly with values from a
uniform distribution in (−ωr, ωr), with ωr playing the role of recurrent weight
scaling. The EuSN reservoir avoids fading memory and facilitates information
retention over longer time spans, ultimately resulting in better accuracy in time-
series classification tasks compared to standard ESNs [6].

For both ESNs and EuSNs, the weights for Wx and bh are randomly initial-
ized from a uniform distribution within the intervals (−ωx, ωx) and (−ωb, ωb),
respectively. Here, ωx and ωb serve as hyper-parameters for scaling the input
and bias. The output is computed by the trainable readout component, which
is usually implemented by a dense linear layer trained by ridge regression. For
time-series classification problems, the readout is fed by the last state computed
by the reservoir across each input sequence.

480

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

3 Reservoir Networks with Linear Memory Cell

We introduce our novel Reservoir Memory Network (RMN) model. As standard
RC networks, the architecture of RMN includes a fixed recurrent component, and
a trainable feed-forward readout. The key distinction lies in RMN’s dynamical
component, which consists of a dual reservoir system: a linear reservoir memory
cell, and a non-linear reservoir for non-linear processing over time. Conceptually,
the reservoir memory cell should explicitly provide the system with a long-range
temporal context on the external input driving signal, feeding the operation of
the non-linear reservoir, which in turn should focus on the non-linear processing
aspects required by the problem at hand. The state of the non-linear reservoir
is then used as input to the readout component. The overall architecture of
RMN is shown in Figure 1. Note that our design allows handling the input
memorization in isolation from the non-linear processing aspects of the system,
thereby avoiding a classic weakness of conventional RC models where memory
and non-linear processing are tightly intertwined. Moreover, it allows one to
decouple the dimensionality of the non-linear reservoir (i.e., Nh) from the size
of the memory cell. Here, we use Nm to denote the number of neurons in the
linear reservoir, andm(t) ∈ RNm to denote the memory state at time-step t. The
memory cell is updated based on the external driving input signal, as follows:

m(t) = Vmm(t− 1) +Vxx(t), (3)

in which Vm ∈ RNm×Nm is a recurrent memory weight matrix, Vx ∈ RNm×Nx

is an input memory weight matrix, and both of them are left untrained after ini-
tialization. The role of Vm is therefore crucial in determining the memorization
abilities of the system, and we leverage two relevant design strategies for appro-
priately structuring the recurrent memory weights. The first entails the use of
an orthogonal Vm matrix, exploiting the optimal short-term memory properties
of this type of dynamic neural systems [7, 8]. In particular, as a specific instance
of an orthogonal weight matrix with fixed weights, we use a circular shift matrix,
containing 1 on the sub-diagonal and on the top-right element, and 0 elsewhere:

Vm =

0 0 . . . 1
1 0 . . . 0
...

.
...

0 . . . 1 0

 . (4)

Our second approach leverages the properties of Legendre polynomials to or-
thogonalize the input signal across a sliding window of length θ:

(V̄m)i,j =
(2i+ 1)

θ

{
−1, i < j
(−1)i−j+1, i ≥ j

. (5)

In this case, the linear reservoir implements a time-invariant memory system
that simulates the derivative operation in the Legendre polynomial basis [2]. To
maximize the resulting memory cell capacity, we set θ equal to the maximum
length of the input time-series, and define Vm = exp(V̄m), corresponding to
the zero-order hold discretisation method.1 Here, we dub the RMN model with
memory cell based on Legendre polynomials as RMNLe. The weights in Vx are
chosen from a uniform distribution over (−ωxm , ωxm).

1We denotes with exp(M) the matrix exponential of M.

481

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

Linear Reservoir Memory

Non-linear Reservoir

𝐱(𝑡)

𝐦(𝑡)

𝐡(𝑡)

𝐦(𝑡 − 1)

𝐡(𝑡 − 1)

Readout

𝐖𝒎
𝐖𝒙

𝐖𝒉

𝐕𝒙

𝐕𝒎

untrained

trained

Fig. 1: Time unrolled architec-
ture of a Reservoir Memory Network
(RMN). The dynamical component
includes two systems: (i) a mem-
ory cell implementing a linear reser-
voir driven by the external input,
and (ii) a non-linear reservoir system
that is fed by both the external input
and the output of the memory cell.
The output of the non-linear reser-
voir component is fed to the readout
component, which is the only trained
part in the architecture.

The non-linear reservoir receives in input both the external input signal x(t),
modulated by Wx, and the state of the memory cell m(t), modulated by an
newly introduced reservoir memory weight matrix Wm. The weights in Wm

are chosen from a uniform distribution over (−ωm, ωm). Notice that the non-
linear reservoir component of RMN can be in principle implemented as any
conventional reservoir architecture. Here, we explore the use of both ESN-like
and EuSN-like non-linear reservoirs described in Section 2. In the latter case,
we denote the resulting model as RMNEu.

Summarizing, here we consider 3 instances of the proposed approach: RMN,
using a circular shift matrix in the memory cell, and an ESN-like reservoir in
the non-linear recurrent part; RMNLe, which is as RMN, but uses a Legendre
polynomial-based recurrent matrix in the memory cell; RMNEu, which is as
RMN, but uses a EuSN-like reservoir in the non-linear recurrent part.

4 Experiments

We have experimentally validated the introduced RMN approach on several
time-series classification benchmarks of diverse nature, including datasets from
the UCR archive (from http://timeseriesclassification.com/) and the se-
quential MNIST (sMNIST). For each dataset, we used the original partition
into training and test sets. The details of the datasets used are given in Table 1.
Time-series classification represents an inherently challenging class of problems,
as it requires accurate retaining of input information over hundreds of steps,
making it an ideal domain for evaluating the long-term dependency capabilities.

We ran experiments with RMN and its variants, using Nh = 500 units in
the non-linear reservoir component, and exploring configurations with a number
of units in the reservoir memory cell Nm equal to 1/3 T , 1/2 T , T , and 2 T ,
where T indicates the maximum length of a time-series in the training set. The
other hyper-parameters were explored in the following ranges: ωx, ωxm

, ωm,
ωb, and ωr in {5, 2, 1, 0.1, 0.01}, ρ in {0.8, 0.9, 1.0}, α, ϵ, γ in {1.0, 0.1, 0.01}.
For comparison, we ran the same experiments with ESNs and EuSNs, exploring
the corresponding hyper-parameters within the same ranges indicated above for
the RMN variants. As regards the non-linear reservoir dimensionality in these
latter experiments, we considered two different setups. The first with Nh = 500,

Name # Tr # Ts T # Feat. # Classes
Beef 30 30 470 1 5
Car 60 60 577 1 4
Coffee 28 28 286 1 2
DuckDuckGeese (DDG) 60 40 270 1345 5
FordA 3601 1320 500 1 2
FordB 3636 810 500 1 2
OSULeaf 200 242 427 1 6
Meat 60 60 448 1 3
ShapeletSim 20 180 500 1 2
ShapesAll 600 600 512 1 60
sMNIST 60000 10000 784 1 10
Symbols 25 995 398 1 6
Wine 57 54 234 1 2

Table 1: Summary of
the datasets used, reporting:
size of the training set (#
Tr) and of the test set (#
Ts), max length of a time-
series (T), dimensionality of
the input (# Feat.), number
of target classes (# Classes).

1234567

RMNLe
2.0769

RMN2.1538

RMNEu
2.4615

EuSNtp
4.5769

EuSNp
4.9615

ESNp
5.8846

ESNtp
5.8846

Fig. 2: Critical difference plot sum-
marizing the aggregated scores across all
datasets.

leading to a comparison under equal conditions of trainable parameters with
the RMN variants. This setting is indicated with a subscript tp. A second
experimental setup for ESNs and EuSNs involved exploring a number of reservoir
units varying within a range such that the total number of internal connections
is in the same range as explored for the case of experiments with RMNs. This
second setting led to a comparison under equal conditions of total number of
reservoir parameters with the RMN variants, and it is indicated with a subscript
p. In all cases, the readout was applied to the reservoir state computed at the last
time-step of each sequence, and was trained by ridge regression with Tikhonov
regularization hyper-parameter λ, exploring values in {1.0, 0.1, 0.01}.

For each model, hyper-parameters were optimized through model selection on
a validation set, derived by a further stratified splitting 33% / 67% of the training
data, utilizing a random search across 200 trials (or until reaching a maximum
of 10 hours of computation for model selection) and averaging results over 3
random guesses. Following model selection, the selected network configuration
was trained on the entire training set and then assessed on the test set, with
averages and standard deviations calculated from 10 random guesses2.

The achieved results are given in Table 2, and demonstrate a clear benefit of
using the RMN method compared to both ESN and EuSN. The enhancements
in performance are uniform across nearly all datasets, with particularly notable
improvements in instances such as Beef, FordA, FordB, and sMNIST. The critical
difference plot, shown in Figure 2, provides a statistical comparison of the overall
performance across all assessed datasets, highlighting the significant differences
and rankings among the RMN models and traditional RC approaches.

2For sMNIST we used 1 guess for each configuration explored in the model selection phase,
and 3 guesses for the final assessment of the models.

483

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

Dataset ESNp ESNtp EuSNp EuSNtp RMN RMNLe RMNEu

Beef 0.55 ±0.02 0.53 ±0.00 0.55 ±0.06 0.42 ±0.05 0.82 ±0.05 0.84 ±0.05 0.82 ±0.05

Car 0.70 ±0.00 0.71 ±0.01 0.81 ±0.01 0.80 ±0.01 0.86±0.02 0.84 ±0.03 0.85 ±0.04

Coffee 0.98 ±0.02 0.93 ±0.02 0.91 ±0.04 0.93 ±0.00 0.99 ±0.02 0.95 ±0.04 1.00 ±0.00

DDG 0.44 ±0.06 0.49 ±0.05 0.48 ±0.04 0.48 ±0.03 0.50 ±0.05 0.53 ±0.04 0.56 ±0.05

FordA 0.71 ±0.01 0.70 ±0.01 0.72 ±0.01 0.69 ±0.01 0.88 ±0.02 0.89 ±0.01 0.87 ±0.01

FordB 0.63 ±0.01 0.61 ±0.01 0.63 ±0.01 0.64 ±0.01 0.74 ±0.01 0.74 ±0.02 0.69 ±0.02

OSULeaf 0.60 ±0.01 0.60 ±0.01 0.61 ±0.02 0.63 ±0.01 0.65 ±0.02 0.65 ±0.02 0.67 ±0.02

Meat 0.85 ±0.00 0.85 ±0.01 0.89 ±0.01 0.92 ±0.02 0.93 ±0.01 0.94 ±0.04 0.97 ±0.01

Symbols 0.67 ±0.01 0.80 ±0.02 0.81 ±0.02 0.89 ±0.00 0.90 ±0.02 0.92 ±0.01 0.89 ±0.01

ShapeletSim 0.49 ±0.01 0.52 ±0.01 0.48 ±0.01 0.51 ±0.04 0.59 ±0.06 0.78 ±0.05 0.50 ±0.03

ShapesAll 0.76 ±0.00 0.75 ±0.00 0.80 ±0.00 0.82 ±0.01 0.81 ±0.01 0.80 ±0.01 0.80 ±0.01

sMNIST 0.60 ±0.00 0.77 ±0.00 0.87 ±0.00 0.72 ±0.03 0.94 ±0.00 0.95 ±0.01 0.96 ±0.00

Wine 0.46 ±0.00 0.43 ±0.02 0.61 ±0.07 0.71 ±0.03 0.80 ±0.03 0.77 ±0.10 0.64 ±0.09

Table 2: Test set accuracy achieved by the proposed RMN variants, compared against litera-
ture RC approaches. Best results are highlighted in bold. For the RMN models: subscript Le
indicates a reservoir memory cell using Legendre polynomials (eq. 5); subscript Eu indicates
that the non-linear reservoir is implemented as in EuSN (eq. 2). For the literature RC models:
subscript p indicates comparison with the same total maximum number of parameters in the
reservoir; tp indicates comparison with the same amount of trainable parameters.

5 Conclusions

We have introduced a novel class of Reservoir Computing systems known as
Reservoir Memory Networks (RMNs), which innovatively combine a linear mem-
ory cell and a non-linear processing reservoir. This dual-reservoir architecture
enhances the handling of long-term dependencies, significantly improving per-
formance on time-series classification tasks over traditional Echo State Networks
and Euler State Networks. The results presented in this paper demonstrate the
great effectiveness of decoupling between a properly designed memory cell and
non-linear processing layer in Recurrent Neural Networks (RNNs), independent
of learning the internal connections. In the future, we plan to extend our analysis
for the development of efficiently trainable structured state space model-based
RNNs, and in neuromorphic hardware implementations.

References

[1] K. Nakajima and I. Fischer. Reservoir Computing. Springer, 2021.
[2] A. Voelker, I. Kajić, and C. Eliasmith. Legendre memory units: Continuous-time repre-

sentation in recurrent neural networks. NeurIPS, 32, 2019.
[3] A. Orvieto, S.L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, and S. De. Resur-

recting recurrent neural networks for long sequences. In ICML, pages 26670–26698, 2023.
[4] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving

energy in wireless communication. science, 2004.
[5] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert. Optimization and applications of

echo state networks with leaky-integrator neurons. Neural networks, 20(3):335–352, 2007.
[6] C. Gallicchio. Euler state networks: Non-dissipative reservoir computing. Neurocomputing,

page 127411, 2024.
[7] O. L. White, D. D. Lee, and H. Sompolinsky. Short-term memory in orthogonal neural

networks. Physical review letters, 92(14):148102, 2004.
[8] P. Tino. Dynamical systems as temporal feature spaces. Journal of Machine Learning

Research, 21(44):1–42, 2020.

484

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

	PapersAndBack
	AllPapers
	Thursday
	ES2024-117-9

