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Abstract. In the domain of network intrusion detection, robustness
against contaminated and noisy data inputs remains a critical challenge.
This study introduces a probabilistic version of the Temporal Graph Net-
work Support Vector Data Description (TGN-SVDD) model, designed to
enhance detection accuracy in the presence of input noise. By predicting
parameters of a Gaussian distribution for each network event, our model is
able to naturally address noisy adversarials and improve robustness com-
pared to a baseline model. Our experiments on a modified CIC-IDS2017
data set with synthetic noise demonstrate significant improvements in de-
tection performance compared to the baseline TGN-SVDD model, espe-
cially as noise levels increase.

1 Introduction

Network intrusion detection systems (NIDS) play a crucial role in protecting
information infrastructures from various cyber threats. Machine learning tech-
niques are becoming increasingly popular and sophisticated in the field of NIDS,
particularly unsupervised methods that enable the detection of novel attacks
[1, 2, 3]. Numerous factors can affect the performance of machine learning-
based NIDS. One important factor is noise within the input signal [4], which can
originate from a variety of sources. For instance, attackers might intentionally
introduce adversarial noise to obfuscate real attacks and mislead the system.
Data poisoning or contamination is a prevalent strategy used to deceive ML
models by manipulating the data [5]. Furthermore, limitations in hardware and
software related to capturing, processing, and storing real-world network data
often lead to multiple irregular faults and errors, thereby increasing signal noise.
These challenges highlight the need for robust detection mechanisms capable of
overcoming such adversities. Traditional models, however, often struggle with
the noisy and dynamic nature of network data, degrading their performance.

Recent advances in graph neural networks (GNN) offer promising avenues
for capturing complex relationships in network data through dynamic graph
structures [6]. However, these models generally rely on clean and precise input
data and lack resilience to noise. Addressing this, we propose a probabilistic
extension to the TGN-SVDD model [6]. This novel approach does not only
detect intrusions and attacks but also explicitly targets unknowns caused by
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noisy inputs by predicting the parameters of a Gaussian distribution. This
dual capability allows the model to effectively manage the uncertainty in noisy
network environments. We evaluate our model using a popular open source data
set CIC-IDS2017 [7], which has been artificially augmented with various types
of noise to simulate real-world conditions. Our results highlight the enhanced
robustness and reliability of our approach compared to the baseline method.

2 Fundamentals

In this work we focus on internet traffic as a data source. Traffic can be rep-
resented as a set of Network flows [8]. These can be consider as a continuous-
Time Dynamic Graph (CTDG), where each network flow corresponds to an
edge addition event in the graph with source IP and destination IP as source
and destination nodes, respectively. Network flow’s statistics features become
an edge features in CTGN. Further we follow the same notation and key concept
definitions as were used in the work [6].

2.1 Continuous-Time Dynamic Graphs (CTDG)

Temporal (multi-)graphs are a sequences G = {x(t1), x(t2), ...} of time-stamped
events x(t), which we consider to be interaction events in the form of directed
temporal edges eij(t), which may be accompanied by an edge feature vectors
fij(t) ∈ Rf . Let E(T ) = {(i, j) : ∃ eij(t) ∈ G, t ∈ T} be an edge set, we define
F (T ) = {i : ∃(i, .) ∈ E(T ) ∨ ∃(., i) ∈ E(T )} as a set of all nodes up to time T .

2.2 The TGN-SVDD

In the work [6] the TGN-SVDD framework was introduced, which is an unsu-
pervised approach to anomaly detection in Dynamic Graphs. It combines the
temporal encoding capabilities of the TGN with the anomaly detection frame-
work of Deep SVDD.

The TGN Encoder generates temporal node embeddings by maintaining a
memory vector for each node, which is updated using a learnable memory func-
tion (e.g., GRU) after each interaction event. Each node i has a memory state
hi(t

−
k ), updated whenever node i participates in an event and t−k is the times-

tamp prior to tk. The TGN encoder function z(i,hi(t
−
k ),Ni(tk),W) generates

an embedding for node i based on its prior state hi(t
−
k ), its temporal neighbor-

hood Ni(tk), and encoder parameters W, mapping it into an embedding space
F ⊆ Rp. For the sake of conciseness, we denote the TGN encoder as zi(tk,W).

TheDeep SVDD Decoder is adapted to work with the TGN encoder’s out-
put. It calculates an anomaly score by measuring the squared Euclidean distance
between the concatenated embeddings of interacting nodes (from TGN) and a
trainable center c of a hypersphere in the embedding space: s(x(tk),W, c) =
∥ (zi(tk,W)⊕ zj(tk,W))−c ∥2, with i and j being event node’s indexes at time
tk and ⊕ the vector concatenation operation.
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The Optimization Objective for the TGN-SVDD model aims to minimize
the anomaly score, alongside a regularization term for the encoder parameters:
minW,c

1
D

∑D
k=1 s(x(tk),W, c) + λ∥W ∥2, with D being the total number of

training interaction events which belongs to the single (normal) class of the data
set and λ the regularization hyperparameter controlling the weight decay.

3 Proposed model: Robust TGN-SVDD

Problem Formulation: We consider the dynamic setting described in Sec-
tion 2.1, where we now identify three types of events: normal events, malicious
attacks, and events attributable to noise. We assume access only to normal
events during training, with the goal being to classify attacks against the com-
bined class of normal and noise events. We assume that noise consists of ir-
regular stochastic CTDG events, x(t). Dynamic edge events induced by pairs
(i, j)|i, j ∼ Uniform(F (T )), where T is the maximum timestamp of the dataset,
and the edge features fij(t) ∼ N (0,Σ), characterized by the covariance matrix
Σ, are randomly added.

We will see that such noise affects the performance of deterministic TGN-
SVDD. We propose a novel unsupervised IDS for Dynamic Graphs via a prob-
abilistic extension of TGN-SVDD, that is robust against random and irregular
events at inference.
Proposed Modeling: We extend the TGN-SVDD from a point-wise regression
task to a probabilistic regression task. We employ a multidimensional Gaussian
distribution as a predicted distribution for a given input. Thus, given an input
event x(tk) with a corresponding node pair (i, j) ∈ E(tk), the TGN encoder
outputs two vectors, µi(tk,W) and σi(tk,W), for each node, representing the
mean and variance of the Gaussian distribution, respectively. Our model assumes
the following relationship for the output parameters: µi(tk,W) ⊕ µj(tk,W) ∼
N (c,diag(σi(tk,W) ⊕ σj(tk,W))). This suggests the choice of an objective as
Negative Log Likelihood (NLL), which takes form:

min
W,c

1

D ·N

D∑
k=1

N∑
m=1

(
log

(
(σim(tk,W)⊕ σjm(tk,W))

2
)

+
(zim(tk,W)⊕ zjm(tk,W)− cm)2

(σim(tk,W)⊕ σjm(tk,W))2

)
,

where N is the dimension of the events embedding. The covariance is a diagonal
matrix, NLL decomposes into a sum of NLL for each dimension. We propose
two scores and a two-fold decision process:

• Apply the score sσ(x(tk)) = 1
N

∑N
m=1 (σim(tk,W)⊕ σjm(tk,W)) to dis-

tinguish noisy exemplars from the rest. The larger sσ(x(tk)) is, the more
likely x(tk) is to be noise.

• Use sµ(x(tk)) = ∥ (zi(tk,W)⊕ zj(tk,W))−c ∥2 as anomaly score to detect
attacks in the rest of the data.
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Negative sampling: In unsupervised learning settings where the model is
exposed only to the normal class, we incorporate negative sampling during
the training phase to enhance the responsiveness of sσ(x(tk)) to noise. For
each training iteration, we obtain negative examples by sampling node indexes
(v, w)|v, w ∼ Uniform(F (T )) for the input events. Different sampling strate-
gies can be applied, which may vary depending on assumptions about the noise
source. In this work, we apply random uniform sampling with replacement from
the complete set of possible nodes F (T ), where T represents the maximum time
in the training dataset. For these negative examples, we modify the objective:

min
W

1

D ·N

D∑
k=1

N∑
m=1

(
log

(
(σ̂vm(tk,W)⊕ σ̂wm(tk,W))

2
)

+
(µ̂vw)

2

(σ̂vm(tk,W)⊕ σ̂wm(tk,W))
2

)
,

where we use σ̂vm for negative samples. We sample the negative mean value
as µ̂vw ∼ N (0,Σ), where Σ is a hyperparameter that amplifies the noise effect
for negative examples. Both positive and negative objectives are simultaneously
optimized during training.

4 Experiment

In this section, we introduce the data, specify the experimental setup, and report
comparative metrics from the experiments.
Data set: We employ the CIC-IDS2017 dataset [7] for model evaluation. This
dataset includes realistic network intrusion scenarios and consists of both normal
and malicious traffic collected over a workweek. We preprocess the data into
four separate datasets, each split into training, validation, and test subsets. The
initial segments contain only normal traffic, with attacks reserved for testing.
More details about the data and its preprocessing steps can be found in [6].
Noise: We craft and inject noise events into the test sets as follows: each
communication event contains corresponding source and destination node IDs
(i, j), a feature vector fij , and a timestamp t. i, j ∼ Uniform(F (T )), fij ∼
N (0,diag(5)), and t ∼ Uniform([ttest, T ]), where ttest is the timestamp of the
first test event, and T is the maximum timestamp in the dataset. We simply
add such random events to the test set for further experiments and evaluations.
Experimental Setup: To tune and adjust hyperparameters, we held out one
dataset, specifically the Wednesday working hours with 5% noise injected into
the test set. The binary classification task was to discriminate between attacks
and the combined class of normal and noise events. The TGN-SVDD was trained
over 30 epochs. For each epoch, the F1 score has been evaluated for a variety
of thresholds. The choice, which corresponds to the best-performing epoch was
used for further experiments. A similar procedure was used to tune the pro-
posed RTGN-SVDD model. A set of F1 scores was computed based on a grid
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of threshold pairs. During this procedure, the following negative sampling pa-
rameters were determined: the amount of negative samples was set to 30% of
the positive examples, and Σ was used for the covariance Gaussian distribution.
Although the model performs well for various Σ values, we chose Σ = diag(5)
as it performs best within our setup. We also used the dataset to determine the
interval of the best-performing thresholds for anomaly score sµ, which in our
experimental setting is [5, 25].
Results: The evaluation task for both TGN-SVDD and RTGN-SVDD is to
classify the attack class against the combined class of normal and attack. The
single baseline evaluation uses a ROC-AUC metric calculated from TGN’s s
output. For the proposed model, we iterate over each possible threshold for sσ
within the interval [5, 25] and compute the ROC-AUC for sµ. The mean value
of this set of ROC-AUC scores contributes to a single evaluation. We repeat the
noise resampling for each level of noise and each day five times to obtain mean
and standard deviation values over single evaluations of both models. These
final summary values are reported in the table 1.

To illustrate the performance of RTGN-SVDD, we provide plots 1 of the
scores per event versus time: sµ on the left and sσ on the right side.

Results suggest that our proposed model significantly outperforms the base-
line model in the case of inference in a noisy environment, showing ever-increasing
robustness with the rise in noise levels compared to the baseline.

Fig. 1: Illustration of RTGN-SVDD performance using the Wednesday working
hours dataset, with a noise level of 5% in the test set. Dashed vertical lines
separate the training, validation, and test sets respectively. On the right: the
sµ score output; on the left: the sσ score output.

5 Conclusion

We introduced an enhanced TGN-SVDD model that integrates probabilistic
methods to improve resilience against noisy data in NIDS. We demonstrated
significant detection accuracy improvements under noisy conditions using the
modified CIC-IDS2017 dataset, highlighting the model’s potential in adversarial
network environments. Future work could explore the application of this model
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Table 1: Summary of ROC-AUC Metrics for TGN-SVDD and RTGN-SVDD on
Tuesday, Thursday and Friday working hours data sets respectively. The table
corresponds to attack against combined normal and noise class classification
task. First column contains the ratio in % of the amount of the noise to the
amount of the normal examples. All the rest columns contain corresponding
ROC-AUC summary metrics multiplied by 100.

Tuesday Thursday Friday

Noise TGN RTGN TGN RTGN TGN RTGN

10 81.5± 2.0 87.1± 2.3 80.3± 9.7 77.1± 5.4 83.0± 0.5 92.7± 0.1
20 72.6± 1.5 85.5± 2.7 66.7± 7.0 76.6± 5.6 73.3± 0.7 91.1± 0.3
30 65.8± 1.5 85.1± 2.1 69.5± 4.7 79.5± 3.9 67.0± 0.9 90.0± 0.4
40 59.9± 2.6 84.7± 1.7 63.2± 2.9 79.4± 6.5 60.9± 1.2 89.1± 0.3
50 57.4± 0.6 84.4± 1.5 61.2± 1.7 73.7± 6.3 56.1± 1.3 88.0± 0.3

to additional datasets and its application of the noise quantitative output for
integration with alternative modality detection systems to further validate and
enhance its effectiveness.
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