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Abstract. Quantifying uncertainty is crucial in artifical intelligence
(AI) applications, particularly in high-stakes healthcare settings. This pa-
per introduces SDE U-Net, a novel architecture that integrates stochastic
differential equations (SDEs) with the U-Net framework, effectively dis-
tinguishing between aleatoric and epistemic uncertainties. By incorporat-
ing a randomness component, SDE U-Net directly captures and quantifies
aleatoric uncertainty, while epistemic uncertainty is assessed through mul-
tiple forward passes. Comparative results show that SDE U-Net not only
matches but also exceeds benchmark performance, achieving similar re-
sults in just 500 epochs, half the epochs required by the benchmark. This
approach enhances the reliability of AI in medical decision-making by pro-
viding a clear, comprehensive representation of uncertainty, marking a
significant advancement in the field of medical image segmentation.

1 Introduction

Innovative AI applications are reshaping medical practices, offering unprece-
dented accuracy and efficiency in the whole pipeline. Unlike applications in
other areas, tasks in healthcare are critically important; even minor errors can
lead to significant risks and even human live losses. Therefore, developing deep
learning models with uncertainty estimation is essential. Uncertainty is a met-
ric that measures how trustworthy the predictions are. There are two kinds
of uncertainty: aleatoric uncertainty, which arises from noise in the data, and
epistemic uncertainty, which refers to the model’s lack of knowledge.

Monte Carlo dropout (MCDO) and deep ensemble (DE) are two prevalent
methods in deep learning. For instance, Vanginderdeuren et al. [13] explored
the estimation of uncertainty in radiation oncology dose prediction, employing
dropout and bootstrap techniques within U-Net models to enhance the safety
and reliability of treatment planning . In contrast, Senousy et al. [5] engineered
an uncertainty-aware network using DE, noted for its high accuracy and effi-
ciency. However, these common approaches for uncertainty estimation have sig-
nificant drawbacks: they require extensive computational resources and cannot
effectively differentiate between the two types of uncertainties.
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Importantly, distinguishing between these two types of uncertainty is vital
for enhancing the reliability of medical decisions. To address this challenge, this
work introduces a novel method capable of distinguishing epistemic and aleatoric

uncertainties. Specifically, our approach combines SDE-Net [7] and U-Net [6].
SDE-Net uses stochastic differential equations (SDE) to model neural networks,
incorporating Brownian motion into the forward propagation.

The rest of this paper is organized as follows: Section 2 presents the theo-
retical principles and model design. Section 3 describes the datasets and exper-
imental setup. Section 4 discusses the results obtained from these experiments.
Finally, Section 5 draws conclusions from our study and sketches perspectives
for future research.

2 Method

2.1 Neural Neworks as Dynamical Systems

Our method is inspired by SDE-Net [7], which conceptualizes neural networks
as dynamical systems. A neural network typically comprises a series of hidden
layers, analogous to the states in a dynamic system. The transformation between
two consecutive layers can be described with the differential equation:

dxt = f(xt, t)dt , (1)

where t represents the levels in the network, f is a function of x and t, and xt is
the hidden state at level t. This equation follows the Euler method for solving
ordinary differential equations (ODEs) [8]. Equation (1) relates to the concept
of a Neural Ordinary Differential Equation (Neural ODE) [8], a deterministic
model that does not inherently estimate uncertainty. To account for uncertainty,
we extend this model by introducing a stochastic term, leading to a Neural
Stochastic Differential Equation (Neural SDE), given by:

dxt = f(xt, t)dt+ g(xt, t)dWt , (2)

where g is a function dependent on x and t, and dWt represents the Brownian mo-
tion. The solution to this SDE can be approximated using the Euler-Maruyama
method [11], as follows:

Xt+∆t = Xt + f(Xt, t)∆t+ g(Xt, t)∆Wt . (3)

The stochastic term introduces variance from the noise into the model, en-
abling the direct capture and quantification of aleatoric uncertainty. Conversely,
epistemic uncertainty is addressed through the variability in model predictions
under different realizations of the stochastic process dWt. By conducting mul-
tiple forward passes through the model, each with a distinct realization of dWt,
we generate a distribution of outputs. This distribution reflects the epistemic

uncertainty.
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2.2 The architecture of SDE U-Net

In our proposed network, depicted in Fig. 1, we integrate the SDE into the
traditional U-Net architecture [6]. Fig. 1 one pair of an encoder and a decoder
from the SDE U-Net architecture, where these components are connected via
skip connections. Our model retains the classical U-Net structure, which consists
of four encoder layers, a bottleneck layer, and four decoder layers.

Fig. 1: One pair of encoder and decoder of the SDE U-Net architecture.

Euler-Maruyama Method: Compared to the standard U-Net, we utilize drift
f and diffusion g modules to implement the Euler-Maruyama method within
each level of the network, as shown in Fig. 2. The drift component f is applied
to generate deterministic changes, while the diffusion component g accounts for
stochastic variations. These are combined at each level to form the final output
as defined by Eq. (3).

Fig. 2: Drift and diffusion modules used to implement the Euler-Maruyama
method in the SDE framework.

Time Convolution: Additionally, we employ time convolution in place of
standard convolution. This involves adding a time channel to the feature maps
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before applying the convolution operation, without altering the number of out-
put feature map channels, as illustrated in Fig. 3. Here, the variable t is rep-
resented as a continuous value proportionate to the level number, calculated as
t = constant× current level

total levels , reflecting the relative depth within the network since
our medical imaging task does not involve temporal data.

Fig. 3: Illustration of how time convolution is implemented by adding a time
channel to the feature maps before the convolution operation.

3 Experiments and Results

3.1 Dataset and Settings

For our experiments, we employed two distinct datasets. The first dataset,
from a previous study on left breast cancer radiotherapy [9], includes CT scans,
segmentation of organs at risk (OARs), and dosimetric data from 60 patients,
divided into training, validation, and testing subsets of 42, 9, and 9 patients,
respectively. The second dataset, sourced from the NSCLC-Radiomics database
[14], consists of CT scans for GTV segmentation from 422 non-small cell lung
cancer patients. These 3D images were processed as 2D slices, resulting in 5930
images (from 379 patients) for training and 652 images (from 43 patients) for
validation, providing a broader evaluation in a different clinical context.

Both models were trained on Nvidia A100 GPUs. The CT images underwent
Z-score normalization for consistency, and only slices containing object masks
were used for training. Post-processing involved sigmoid activation followed by
thresholding at 0.85 to generate the final segmentation masks.

3.2 Results

In the first dataset, our SDE U-Net achieved a Dice score of 0.9598, while nnUNet
scored 0.9788. On the second dataset, our SDE U-Net achieved a Dice score just
above 0.4, compared to nnUNet’s slightly higher score above 0.5. Despite the
slightly higher score of nnUNet, our model showed comparable performance with
significantly fewer parameters- 62.5 million versus nnUNetâs 126.6 million- high-
lighting its robustness and potential, especially in resource-constrained settings.

We also explored the relationship between Dice scores and uncertainty, fo-
cusing on both aleatoric and epistemic uncertainties. Epistemic uncertainty was
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quantified by multiple forward passes during inference, calculating the variance
across predictions, while aleatoric uncertainty came from the SDE U-Net’s final
diffusion layer. As shown in Table 1, we found a moderate negative correlation
between Dice scores and epistemic uncertainty, consistent with the idea that
higher uncertainty reflects lower confidence and accuracy. Aleatoric uncertainty,
however, showed varying correlations with Dice scores across patients (Pearson:
0.38 to 0.72), indicating the model’s capture of intrinsic variability.

Table 1: Correlation coefficients between Dice scores and uncertainty for different
patients.

Patient Epistemic Uncertainty Aleatoric Uncertainty

Pearson Spearman Pearson Spearman

10 20 50 10 20 50

Patient 1 -0.8691 -0.8695 -0.8705 -0.6429 -0.6429 -0.6429 0.56 0.80
Patient 2 -0.8144 -0.8147 -0.8144 -0.7716 -0.7822 -0.7733 0.70 0.51
Patient 3 -0.8336 -0.8329 -0.8327 -0.7771 -0.7873 -0.7802 0.55 0.61
Patient 4 -0.6522 -0.6608 -0.6570 -0.6944 -0.7048 -0.6975 0.49 0.55
Patient 5 -0.5074 -0.5058 -0.5036 -0.7277 -0.7246 -0.7300 0.65 0.55
Patient 6 -0.7881 -0.7837 -0.7888 -0.4708 -0.4598 -0.4653 0.72 0.32
Patient 7 -0.2188 -0.2166 -0.2138 -0.8950 -0.8831 -0.8861 0.38 0.59
Patient 8 -0.9022 -0.9054 -0.9020 -0.8338 -0.8269 -0.8292 0.64 0.28
Patient 9 -0.3695 -0.3667 -0.3729 -0.8468 -0.8425 -0.8504 -0.43 -0.08

4 Conclusion

This study introduces a novel integration of SDEs into the U-Net architecture
to incorporate aleatoric uncertainty directly into the model. Unlike typical
approaches that use a density map for uncertainty quantification, our model
uniquely outputs aleatoric uncertainty as a numerical value, enhancing the in-
terpretability of uncertainty in medical image segmentation.

Noticeably, the diffusion output, interpreted as aleatoric uncertainty, shows a
decreasing trend during training and validation, inversely related to Dice scores,
yet positively correlates with Dice scores during testing. This observation raises
intriguing questions about the dynamics between learned uncertainty and model
generalization, indicating a complex interplay that requires further exploration.

The study is limited by its lack of comparison with other uncertainty es-
timation methods, which could provide deeper insights into the efficacy of our
approach. Looking ahead, there is potential to extend this methodology to other
medical domains such as dose prediction and 3D segmentation, suggesting broad
implications for predictive models in medical practice.

In conclusion, the integration of aleatoric uncertainty within our framework
presents a promising direction for improving the robustness and reliability of
medical imaging analysis. Future work will focus on further elucidating the
dynamics of uncertainty and expanding the model applications.
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