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Abstract. While 3D data is rich in information, it often comes with
the drawback of being tedious to handle. Recent work in the Geometric
Deep Learning community focused on developing high quality 3D datasets
for tasks like mesh segmentation. However, the label quality can never be
assured to be perfect. To improve label quality in 3D datasets, we pro-
pose an interactive algorithm combining DeepView, a method to visualize
the classification function of neural networks, with Intrinsic Mesh CNNs,
which generalize the convolution to Riemannian manifolds, to smartly se-
lect adequate sets of vertices from triangle mesh data for label correction.

1 Introduction

Deep learning models achieve state-of-the-art results in various tasks and re-
search areas. For non-Euclidean data such as graphs and manifolds in tasks like
3D object segmentation, geometric deep learning (GDL) approaches have shown
to be very promising [1]. Several articles have shown that explainable AI (xAI)
methods can increase trust in machine learning models or even help to improve
them by detecting artifacts in their training data [2, 3]. While some of them also
target GDL-models, such as intrinsically interpretable methods [4, 5] and adap-
tations of post-hoc methods (see [5] for examples), most of them are limited to
local interpretation methods specifying e.g. which parts of the current input are
important for the resulting prediction. Global dimensionality reduction (DR)
based methods do exist for other domains [3, 2, 6] and have been shown to be
useful to detect different types of attacks, artifacts in the data and to understand
model behaviour during training, but have not been investigated for GDL mod-
els. Methods from xAI can also be used to identify data points with incorrect
ground truth labels. While there do exist classic approaches for classification in
the presence of label noise [7], they usually work fully automated and, hence,
are prone to errors. In contrast, recent work [8, 9] in the image segmentation
domain, where coarse pixel classifications correspond to label noise, utilizes an
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assisted-manual approach where automated labels are corrected pixel-wise by
human annotators. While such pixel-wise annotation works well for image data,
it becomes tedious for 3D segmentation problems with point clouds and trian-
gle meshes [10]. In this work we adopt the DeepView method [3] to Intrinsic
Mesh CNNs (IMCNNs) [11] by proposing a 3D segmentation-label correction al-
gorithm for noisy datasets. We argue that by visualizing the classification space
of an IMCNN, we are able to combine the model’s learned knowledge with an
oracle’s knowledge and by that can select meaningful subsets of labels to correct.
We show the algorithm’s efficacy by improving segmentation labels of PartNet-
Grasp, a subset of triangle meshes from the widely known PartNet dataset [10],
which we make publicly available1.

2 Background

DeepView [3] is a framework to visualize a part of the prediction function of
a deep neural network classifier together with it’s training or testing data. It
consists of four core steps which include (i) projecting the data to two dimension
using a discriminative (sometimes also referred to as supervised) DR method,
(ii) sampling a regular grid in the 2D space and mapping it to the original
input space, (iii) applying the classifier to the projected samples to obtain the
predicted class label and the certainty estimate and finally (iv) visualizing the
certainties and predicted classes in the background of the 2D scatter plot to
obtain an approximation of the decision function. The DR step is the most
influential one since it selects a subspace of the input for visualization. To this
end, DeepView employs a discriminative variant of UMAP [12], that uses regular
UMAP together with a discriminative distance metric that emphasizes directions
in the data space, where classifier predictions change.

Intrinsic Mesh CNNs [11] generalize the standard Euclidean convolution to con-
volutions on manifolds:

(s ∗ t)(u⃗) =
∫
BR

t(v⃗) [s ◦ expu⃗ ◦ ωu⃗](v⃗) dv⃗ (1)

Hereby, BR ⊂ Rn represents the sphere with radius R around 0⃗, t : BR →
R a trainable template, s : M → R a signal function defined on a compact
Riemannian manifold M , expu⃗ : Tu⃗M → M the exponential map for the tangent
space at u⃗ and ωu⃗ : BR → Tu⃗M the selected gauge for Tu⃗M . The manifold
convolution essentially defines a parameterization space for the local tangent
space in the point of convolution and utilizes a pullback of the signal to said
parameterization space. The pullback thereby respects the local geometry of
the manifold. Eventually, the convolution is computed in the parameterization
space. IMCNNs aim to learn intrinsic properties of the underlying manifold,
which are invariant towards metric-preserving transformations of the manifold
such as rotations and translations.

1Experiment code: https://github.com/andreasMazur/VisMeshSegmentation.
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Algorithm 1 DeepView 3D Segmentation Label Correction

Require: Dataset D = {(mi, li)}Ni=1 of N meshes mi with vertex labels li
1: imcnn ← trainIMCNN(D)
2: D̃ ← ∅ ▷ D̃ represents a new dataset
3: for (mi, li) in D do
4: I ← DeepView(imcnn, (mi, li)) ▷ I represents the DeepView image
5: L ← ∅ ▷ L represents the list of all corrections
6: while oracle dissatisfied do
7: V ← selectRegion(I) ▷ select vertices V in I with lasso tool
8: highlightIn3D(mi, li,V)
9: C ← proposeCorrections(V) ▷ labels C for V chosen by the oracle

10: L ← addToCorrections(L, V, C) ▷ add new, replace old corrections
11: end while
12: (m̃i, l̃i)← applyCorrections(L, (mi, li))
13: D̃ ← addToDataset(D̃, (m̃i, l̃i))
14: end for
15: return D̃

3 Sampling from PartNet: PartNet-Grasp

In this work we evaluate our methodology on a subset of the PartNet dataset
[10], which can be used to train segmentation models for the downstream task
of e.g. object grasping. We select triangle meshes from the Mug class of the
PartNet dataset, which consists of 192 meshes with annotations describing part
elements such as “body” or “handle”. While PartNet contains segmented regions
as individual meshes, we are interested in single object meshes containing mul-
tiple segments, in which each vertex is assigned to exactly one segment. Since
PartNet builds on top of ShapeNet [13] we can transfer the segment-meshes from
PartNet to their corresponding original meshes in ShapeNet and assign PartNet
labels to ShapeNet meshes using the following heuristic:

(i) We calculate the scaling factor between the largest dimension of the origi-
nal mesh in ShapeNet and the corresponding segment meshes from PartNet that
in combination build the original ShapeNet mesh. (ii) The translation error is
calculated as the difference between the centers of mass of the original ShapeNet
and the scaled combined mesh. (iii) The rotation is either correct or off by −90◦

around the z-axis. By comparing the Chamfer-distance between the vertices of
both meshes, we determine which rotation results in a better alignment. (iv)
For each vertex in the ShapeNet mesh we calculate the signed distance to each
PartNet mesh and assign the segment-label with the smallest distance.

For the downstream task of classifying graspable regions, only the handle
annotations are retained and the remaining vertices are assigned the body class,
i.e., non-graspable regions. Mugs containing liquids or other additional objects
are excluded from the dataset. The final dataset consists of 100 meshes, ranging
from 74 - 8848 vertices, with an average of 1504 vertices per mesh. Since the
focus of this subset lies on labeling graspable regions of mugs we refer to it as
PartNet-Grasp in the course of this work.
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Fig. 1: [Left] DeepView embedding showing 2D projections of the data points
corresponding to points of the 3D mesh together with a projection of the classi-
fication function in the background. The selected area of vertices via the mat-
plotlib lasso tool for 3D visualization and potential label correction is depicted
in red. [Right] The encircled vertices highlighted on the 3D shape of PartNet-
Grasp. The oracle can now determine whether the labels are correct.

4 Segmentation Label Correction Algorithm

As the labels in PartNet-Grasp were computed using a heuristic, optimal label
quality is not guaranteed. To improve the label quality, we propose a novel
method for correcting 3D segmentation labels using DeepView and IMCNNs.
Our method starts by training an IMCNN on the available dataset that contains
noisy labels for 3D mesh segmentation. We then use the trained IMCNN to
iteratively compute DeepView visualizations per mesh. Thereby, the DeepView
image portraits not only the projected classification function of the IMCNN in
the background but also 2D vertex-feature projections of the vertices from the
current mesh. Using the projected classification function and 2D vertex-feature
projections for assistance, an oracle selects a set of points within the DeepView
image, subsequently receives a 3D visualization of the selected points highlighted
on the shape and eventually corrects the labels if it determines that they have
been assigned to the wrong class. This process is repeated until the oracle does
not see any other incorrect labels for the current mesh. It receives new meshes
from the dataset for correction until the labels for all meshes in the dataset have
been corrected. Algorithm 1 and Figure 1 describe the process in more detail.

5 Experimental Evaluation

We first evaluate whether training a classifier on the corrected samples yields a
significant improvement, and second, compare to a label noise detection baseline.

Impact of Label Correction in Classification We conduct 30 IMCNN training
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Network Architecture

BN(FC(3 → 64))
BN(ISC(64 → 8, 96))
AMP(8, 96 → 96)
FC(96 → 2)

Labels Accuracy Loss

Uncorrected 0.86± 0.02 0.32± 0.02
Corrected 0.94± 0.01 0.21± 0.01

Improvement 0.08 0.11 (34%)
WRT p-value < 10−10 < 10−10

Table 1: [Left] The IMCNN-architecture used in our experiments. The inputs
are 3D coordinates of the mesh vertices; FC stands for fully connected, BN
for batch normalization, ISC for intrinsic surface convolution (cf. Eq. 1) and
AMP for angular max-pooling [11]. We apply ReLU-activation functions after
each layer except the last one. The network shall predict whether a vertex
belongs to a graspable mesh segment. [Right] Mean test accuracies and losses
as well as their standard deviations over 30 training runs for the corrected and
uncorrected PartNet-Grasp datasets. The samples for the WRT are given by
the test accuracy sets or test loss sets, respectively.

runs on the corrected as well as uncorrected PartNet-Grasp dataset, i.e. 60
training runs in total, using the architecture from Table 1 on the left. We
split the corrected and uncorrected version of PartNet-Grasp equally into a
70/10/20 training, validation and test split and test all models on the corrected
test dataset. We use the collected test accuracies and losses to proceed with a
two-tailed Wilcoxon rank-sum hypothesis test (WRT). This test examines the
null-hypothesis whether our collected accuracies or losses, respectively, arise from
the same distribution.

In our case, we compare the test statistics of the models trained on the
corrected versus uncorrected datasets. The averaged test accuracies, test losses,
their variances and the p-values for the WRT can be seen in Table 1 on the right.
Since both p-values are smaller than α/2 for a significance level of α = 0.05 it
becomes evident that we can reject the null-hypothesis. We thus can observe
a statistical significant difference between the collected samples for corrected
and uncorrected data. The difference is given by an improvement of 8% in test
accuracy and 48% in test loss on average.

Comparison to other Label Noise Detection Methods We additionally compare
our algorithm to a simple filter approach [7], which selects those points that are
misclassified by the model with high certainty. Here we compute how many of
the points selected by our strategy would be retrieved with the filter method,
by simply looking at all misclassified points. Thereby, we avoid dealing with
multiple thresholds to specify high certainty. We obtain an average recall of
0.63±0.40 and an average precision of 0.39±0.33, averaging over all meshes. In
total, more then 30% of the incorrectly labeled points could not be retrieved this
way on average, while suggesting many points for relabelling, which the oracle
did not deem incorrectly labeled.
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6 Conclusion

In this work we have proposed a segmentation label correction algorithm that
combines DeepView with IMCNNs to correct noisy segmentation labels in 3D
datasets. We experimentally evaluated our algorithm at the hand of PartNet-
Grasp, a sub-dataset we have sampled from PartNet, by conducting theWilcoxon
rank-sum test and compared it to a classical filter approach. Our experiment
results showcase the algorithm’s effectiveness.
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