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Abstract. Large language models (LLMs) have achieved significant re-
cent success in deep learning. The remaining challenges in robotics and
human-robot interaction (HRI) still need to be tackled but off-the-shelf
pre-trained LLMs with advanced language and reasoning capabilities can
provide solutions to problems in the field. In this work, we realise an
open-ended HRI scenario involving a humanoid robot communicating with
a human while performing robotic object manipulation tasks at a table.
To this end, we combine pre-trained general models of speech recogni-
tion, vision-language, text-to-speech and open-world object detection with
robot-specific models of visuospatial coordinate transfer and inverse kine-
matics, as well as a task-specific motion model. Our experiments reveal
robust performance by the language model in accurately selecting the task
mode and by the whole model in correctly executing actions during open-
ended dialogue. Our innovative architecture enables a seamless integration
of open-ended dialogue, scene description, open-world object detection and
action execution. It is promising as a modular solution for diverse robotic
platforms and HRI scenarios.

1 Introduction

The recent advances made in deep learning
have led to successful applications of artifi-
cial intelligence such as chatbots, visual ob-
ject detection, image captioning and speech
recognition. The advent of the Transformer
architecture [14] has brought about the pos-
sibility of training ever larger models with
enormous amounts of data. Omnipresent
large language models (LLMSs), for example,
have usually billions of parameters and are
trained on trillions of text tokens. Although
these large models perform well on tasks they are trained on, training them
on such large datasets requires a considerable amount of computational power,
which is not available to small labs or end users. Fortunately, the availability of
pre-trained models renders training from scratch unnecessary.

In this work, we propose a modular approach, ELMiRA! (Embodying Lan-
guage Models in Robot Action) that integrates highly capable foundation mod-

Fig. 1: NICO in our scenario.

*This work was supported by the German Research Foundation (DFG) under Project TRR
169 Crossmodal Learning (CML) and LeCAREDbot. Philipp Allgeuer contributed software.

1Our project website with an exemplary video can be found at
https://knowledgetechnologyuhh.github.io/ELMiRA
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els trained on big datasets for a conversational human-robot interaction (HRI)
scenario. ELMiRA uses pre-trained models of automatic speech recognition
(ASR), text-to-speech (TTS), vision-language (VLM) and object detection, which
do not require further training. To adapt ELMiRA to our robotic setup, we em-
ploy a visuospatial coordinate transfer network and an inverse kinematics (IK)
solver. Moreover, we devise a specific motion planner to perform several ac-
tions within our object manipulation scenario. By utilising multiple off-the-shelf
models, our humanoid robot NICO [7] can manipulate objects on a table while
conversing with a human in an open-ended fashion (Fig. 1). This brings capa-
bilities of pre-trained models such as dialogue, zero-shot open-vocabulary object
detection and scene description into a robotic application.

2 Related Work

Recently, many approaches have been proposed utilising LLMs or VLMs in the
context of robotic manipulation [6, 13]. SayCan [1] uses LLMs to split high-level
instructions into executable actions, which are evaluated by a value function in
terms of affordance. It chooses actions with a combined score of high common-
sense relevance and affordance. Likewise, ViLa [5] employs GPT4-V [11] to
decompose high-level instructions into low-level executable actions for object
manipulation. Jointly processing vision and language by a VLM results in a
task-focused understanding of the current scene based on the given instruction.
ViLa outperforms SayCan in common-sense tasks and works with multimodal
input instructions, i.e. providing a goal image or a combined image-language
goal. TidyBot [16] exploits common-sense knowledge inherent in LLMs for gen-
eralising to object types according to user preferences in a room-tidying task.
It can generalise to objects regarding their attributes like colour or purpose.
PIVOT [10] leverages VLMs for robotic control by casting robotic tasks as VQA
problems. Scene images are annotated with possible movements for spatial con-
trol and fed to a VLM with an accompanying query for the best actions. The
actions are iteratively optimised based on the VLM’s answers without learn-
ing. However, ambiguities in depth information degrade PIVOT’s performance,
indicating a need for an adaptive mechanism. Generally, the state-of-the-art
approaches focus on action planning, while we capitalise on LLMs to facilitate
open-ended multi-turn dialogue. Moreover, the zero-shot generalisation capabil-
ities of ELMiRA allow us to detect and localise all objects as well as describe
any given scene independently of our specific scenario.

3 ELMiRA: A Modular HRI Approach

To leverage state-of-the-art models in different domains, we devise the modular
ELMiRA architecture, shown in Fig. 2. It is composed of an ASR, a VLM, an
object detector, an visuospatial coordinate transfer unit, a motion planner, an IK
solver and a TTS model. We evaluate it in a tabletop object manipulation task-
oriented HRI scenario where a user communicates verbally with the robot. The

626



ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

describe

"Hi "Hello! Sure,
'Hi NICO! speak TTS ; 4
Can you show me —»| VLM 1 (VITS) here's the"red
the red cube?” (GPT-4(V)) et cube.
E ction
. Type

Action !
Feedback:

Target Object

Pixel Real Target i
Object Detector | Pos, Coord. (Motion | Pose (K Action
Execution
(OWLv2) Planner olver) =
(joint values)

Fig. 2: ELMiRA architecture. It accepts as input human user speech and im-
ages from the robotic eye camera; it outputs speech and executes actions. Blue
modules denote pre-trained off-the-shelf models, red modules denote robotic
platform-specific models and the module is task-specific. Akin to a con-
ductor of an orchestra, the VLM decides whether to output speech (speak mode),
describe the current scene (describe mode) or trigger a robot action (act mode).

conversation can range from chitchat to task-related visual processing requiring
action commands. The robot needs to know when to speak and when to execute
an action according to the user instruction.

Vision Language Model The VLM assumes the role of a dialogue manager. It
receives user input in textual format via the ASR model (Whisper [12] adapted
from Allgeuer et al. [2]) and sends textual output to the TTS model (VITS [8]) to
produce it as speech. We use GPT-4V as VLM, while also employing the GPT-4
LLM via the OpenAl API. We utilise both the text-only GPT-4 and the image-
allowing GPT-4V since the GPT-4V is not yet available as a conversational
assistant that can manage a dialogue. We therefore deploy GPT-4 as the chatbot
that has conversation memory, while triggering a one-time response only GPT-
4V instance when visual processing is required?. Based on the user input and
visual observation, GPT-4 chooses one of the three task modes:

e speak: When the given user input is not related to the tabletop scenario,
ELMiRA generates a textual output via GPT-4, which is passed to the
TTS model to produce speech.

o describe: When the user asks the robot to describe what it sees on the
table, the current scene image is fed to the GPT-4V with the user input.
The GPT-4V then passes the description of the tabletop scene to GPT-4
which in turn triggers the TTS to produce speech.

e act: When the user asks the robot to manipulate an object, the VLM
triggers the action mode and infers the action type and target object. The
target object name is passed to the object detector alongside the current

2The recent multimodal GPT-40 can replace GPT-4 and GPT-4V together.
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image to localise the target object in pixel space. The pixel positions are
then passed to the Visuospatial Coordinate Transfer model that locates
the real-world coordinates of the object. These coordinates and the action
type are fed to the motion planner to find the target arm pose including
orientation, which are finally given to the IK solver to produce the joint
angle values of the suitable arm for action execution.

Object Detection In the act mode, after GPT-4 has extracted the target object
name from the user action command, OWLv2 [9] detects the target object on
the table. It receives the current scene image through the robot eye camera as
well as the target object name as input. OWLv2 can detect multiple instances
of the same object but we choose the one with the highest score and extract the
pixel coordinates of the bottom centre of the bounding box. In case the target
object cannot be found on the table or is placed in an unreachable position, the
object detection module informs the VLM that the action cannot be executed.

Visuospatial Coordinate Transfer The Img2Real module transforms the pixel
coordinates to 3D real-world coordinates. It uses a multi-layer perceptron (MLP)
trained as an implicit energy-based model (EBM) [3] with an InfoNCE loss func-
tion and sampling-based derivative-free optimisation for inference. The implicit
MLP is trained in advance by distinguishing a set of uniformly distributed real-
world coordinates from random counter-examples based on the corresponding
points in image pixel space. During inference, it finds the real-world coordinates
for given pixel positions of the target object by iteratively resampling random
candidates based on their predicted probabilities and adding Gaussian noise.

Motion Planner Our motion planner decides whether to use the left or right
arm of the robot based on the real-world coordinates of the target object and out-
puts the corresponding end-effector trajectory of the chosen arm for a given ac-
tion type (i.e. show, touch, push-forwards, push-leftwards and push-rightwards).
Each target pose in the trajectory consists of the Cartesian (x,y, z) position of
the end-effector and its target orientation as a unit quaternion.

Inverse Kinematics Solver The joint configurations needed to execute the robot
arm’s trajectory are computed using EvolK [4], an evolutionary IK solver which
aligns the forward kinematics of its population with the target pose by minimis-
ing the weighted sum of the Euclidean distance between the position vectors
and the geodesic distance between the orientation quaternions. The trajectory
is computed iteratively, using the previous joint angles as the initial centre of
the population for the following step to accelerate the computations and guide
the algorithm to find solutions which are close to each other.

The model components, which are connected by the robot operating system
(ROS), have the following response times, averaged over 60 trials: VLM 8.98s
including GPT-4 together with GPT-4V, object detection 0.57s, Img2Real 0.05s,
motion planner <lms, IK solver 0.26s.
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Table 1: Mode Detection Success Table 2: Action Execution Success
Act Describe Speak Forwards Leftwards Rightwards
86.67+4.71 46.67+£28.67 100.0+0.0 79.17 86.96 72.0

4 HRI Experiments with NICO

We conduct two sets of experiments with the NICO robot on our tabletop setup,
aimed at evaluating the robustness of ELMiRA in two aspects: mode selection
and action execution.

Mode Selection Ezperiments We test the mode selection performance of our
method by having three instances of a scripted human-robot conversation, in-
volving 60 turns, where we check whether the VLM detects the correct mode
intended by the user. The detection success rate for each mode is given in Ta-
ble 1. In most cases (77% on average), ELMiRA understands the user’s intention
and switches to the correct mode. However, frequently the VLM refuses to de-
scribe a scene in describe mode and goes into speak mode instead. In the few
cases, when it refuses to trigger the act mode, it also chooses the speak mode.

Action Execution Fzxperiments The action execu- Push Action Object Displacement
tion experiments involve three directions of push o < >
(forwards, leftwards and rightwards) on 8 differ- @ ( ;
s . 0.0 \ g
ent objects (a sponge, a die, a rubber duck, a toy j[
-0.1
== Success Threshold (2cm)

Distance (m)

tomato, a green cube, a toy car, a cup and a red
cube), with a total of 72 executions. We use a
minimum threshold of 2 cm displacement in the di- -3l =~ e
rection of the intended push action as an objective

success metric. Table 2 shows the action execution Fig. 3: Object displace-
results per push direction. Overall NICO executes ments per push direction.
the given action with an average accuracy of 79%.

The push-leftwards action is the most successful, while push-rightwards is the
least successful action. Fig. 3 displays the distribution of target object displace-
ments in the intended direction; samples over 2 cm (dashed line) are considered
correct. NICO clearly pushes the target object into the right direction in most
cases, with few exceptions in which the target is moved in the wrong direction
due to mistakes in the IK solution. Apart from the push actions, we tested
ELMiRA with show and touch actions, both of which were distinguishably and
correctly executed.

5 Conclusion

We have proposed a novel modular architecture leveraging recent progress in
LLMs, open-vocabulary object detection and speech recognition. Specifically,
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we have used pre-trained general ASR, VLM, object detection and TTS models
alongside small robotic-platform- and task-specific modules for a dialogue-based
tabletop object manipulation scenario. ELMiRA is a starting point for facili-
tating full-fledged dialogue and robotic action through a seamless integration of
open-world object detection, scene description and general conversational skills.
By drawing inspiration from neuroscience concepts [15] and leveraging increas-
ingly capable foundation models, our modular approach can widely benefit HRI.
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