
Forget early exaggeration in t-SNE:
early hierarchization preserves global structure

John A. Lee12, Edouard Couplet1, Pierre Lambert1,
Ludovic Journaux3, Dounia Mulders1, Cyril de Bodt1, and Michel Verleysen1 ∗

1- UCLouvain - IREC/MIRO
Avenue Hippocrate 55, 1200 Brussels, Belgium

2- UCLouvain - ICTEAM/ELEN
Place du Levant 3, 1348 Louvain-la-Neuve, Belgium

3- Institut Agro Dijon - Laboratoire d’Informatique de Bourgogne
Boulevard Docteur Petitjean 26, 21079 Dijon, France

Abstract. As a local method of dimensionality reduction, t-SNE re-
quires careful initialization in order to preserve the data global structure
to the best extent. In regular t-SNE, the low-dimensional embedding is
initialized either randomly or with PCA; next, gradient descent refines the
embedding coordinates in two phases. In the first one, called early exag-
geration, attractive forces between points are artificially strengthened to
delay any detrimental effect of repulsive forces while points are still poorly
organized. In this paper, a novel initialization of t-SNE is proposed. It
works by hierarchizing the data points into a space-partitioning binary
tree and successive runs of t-SNE with 4, 8, 16, ..., N points. Between
two runs, the prototypical point in each tree branch is split into its two
children prototypes, with some little random noise, and the embedding
is rescaled to account for the increased population. Experimental results
show the effectiveness of the method. The proposed method is compatible
with any method of neighbor embedding (t-SNE, UMAP, etc.) provided
early exaggeration can be disabled and initial coordinates can be fed into.

1 Neighbor embedding

Since 2008, the field of dimensionality reduction (DR) has gained much popu-
larity thanks to Student t-distributed SNE (t-SNE) [1], a method of neighbor
embedding that extends and modifies the original stochastic neighbor embed-
ding (SNE) [2]. As compared to older methods like principal component anal-
ysis (PCA) [3] and multidimensional scaling (MDS) [4], for instance, t-SNE is
no longer a global method based on variance or distances. Instead, it is a local
method that that works with similarities and is almost immune to the curse of
dimensionality and yields impressive results. Starting from 2015, accelerated
versions of t-SNE have become available [5, 6], allowing to embed up to millions
of points and then extending applicability to many domains. As a remarkable
example, computational biology has widely adopted t-SNE and similar methods
to embed and visualize cell data (e.g., single cell transcriptomics [7]). In that
field, and in many others, t-SNE is used primarily for DR, although it gets used
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more and more to identify clusters [8, 9], as it actually outperforms genuine
methods of clustering in many respects, thanks to its inductive bias and strong
repulsive forces. However, t-SNE is not perfect and, being a local method, it is
known to poorly preserve the global structure of data [10].

This paper addresses this issue in a novel way, by chaining successive runs of
t-SNE with growing number of points (4, 8, 16, . . . N). Each run gets initialized
with the previous one, by splitting each point into two and adding little random
noise. Such divisions are made possible by first hierarchizing the data points
into a space-partitioning binary tree (which is typically used in accelerated t-
SNE anyway [5]). Each run of t-SNE inherits a trace of the global structure
and, provided gradient descent works with a reasonable learning rate, this ‘big
picture’ is gently modified, refined with some more local structure, and passed
on to the next run. This approach bears some similarity with multiresolution
pyramids in image processing [11], e.g., for non-rigid image registration [12].

The rest of this paper is organized as follows. Section 2 is a short reminder of
t-SNE, also stating the requirements for the proposed initialization. Section 3 de-
scribes the hierarchical initialization of t-SNE. Experimental results are reported
and discussed in Section 4. Section 5 concludes and sketches perspectives.

2 Student t-distributed stochastic neighborhood

Neighbor embedding (NE), including methods like stochastic neighbor embed-
ding (SNE) [2], t-distributed SNE (t-SNE) [1], uniform manifold approxima-
tion and projection (UMAP) [6], etc., work by preserving pairwise affinities
(a.k.a. similarities). In SNE, these soft neighborhoods are softmax ratios, i.e.,
Gaussian functions that are normalized into discrete neighborhood probabilities
in both the data and embedding spaces (HD & LD), whose mismatch is mea-
sured with Kullback-Leibler divergences. In t-SNE, the HD Gaussian affinities
are symmetrized, while the LD affinities are Student t hyperbolic functions that
are normalized jointly. If X = [xi]1≤i≤N and Y = [yi]1≤i≤N denote the HD
data and their LD embedding, then the pairwise affinities are

pj|i =
exp−∥xi − xj∥2/2σ2

i∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i )
, pi|i = 0 , and pij =

pj|i + pi|j

2N
, (1)

where bandwidth σi is such that the entropy Hi = logK⋆ = −
∑

j ̸=i pj|i log pj|i
is the same around all xi and set by perplexity K⋆. In the embedding space,
these symmetrized entropic affinities are matched by

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

, qii = 0 (2)

through minimizing the joint KL divergence KL(P ||Q) =
∑

i̸=j pij log(pij/qij).
Minimization is carried out with gradient descent (and momentum) in three
stages: initialization, early exaggeration, and fine tuning. The gradient of the
KL divergence is ∇yi

KL(P ||Q) = 4
∑

j ̸=i(pij − qij)(1 + ∥yi − yj∥)−1(yi − yj),
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where pij and qij are responsible for attractive and repulsive forces between yi

and yj , respectively. In legacy t-SNE, Y is initialized either randomly (Gaussian
distribution with variance much lower than 1) or a rescaled PCA projection (also
with low variance). Initialization with Laplacian eigenmaps (LE) instead of PCA
has been proposed for UMAP [10]. Early exaggeration (EE) temporarily and
artificially magnifies the attractive forces by replacing pij with αpij , where α = 4
or even higher values [9]. The intuitive effect of EE is that it makes clusters
tighter in Y, thereby making inter-cluster gaps broader; EE has been related
to spectral clustering and power iterations with the graph Laplacian matrix
associated with symmetric transition probability matrix P = [pij ]1≤i,j≤N [9].
Usually, t-SNE runs for 1000 iterations, with about one quarter or one fifth for
EE and the rest for fine tuning with the actual values of pij . By magnifying pij ,
EE also increase the gradient magnitude, leading to swift and drastic motions of
points in the embedding in the early iterations, and thus to possible scrambling
and disorganization of the global data structure (inter-cluster arrangement). In
the fine-tuning stage, the attractive forces go back to their nominal values and
repulsive forces get comparatively stronger then, thereby accentuating cluster
gaps or even separating spurious clusters due to noise or data sampling. The
absence of global structure with random initialization or its likely scrambling by
EE after initialization with PCA or LE makes t-SNE a strongly local method,
generating debates and controversies among its users and research communities
[10].

To prepare the ground for the proposed initialization, simple requirements
should be fulfilled: the implementation of t-SNE (or any other similar method
of NE for that matter) can be run with the call: Y(T ) = tsne(X,Y(0),K⋆, T ),
where t-SNE runs without EE, starting from specified initial coordinates Y(0)

for T iterations with perplexity K⋆.

3 Early hierarchization to initialize successive t-SNE runs

Starting from X, a space-partitioning binary tree can be built. In HD space,
vantage-point trees, relying on distances, are typically preferred over (non-binary)
kd-trees, working with coordinates. Each node of the tree splits a set of N points
into two non-overlapping regions with ⌊N/2⌋ and ⌈N/2⌉ points, respectively.
Each branch then gets further divided into thinner ones, up to reaching the tree
leafs where just one or two points are held (if the data size N is not a power of
2). In each node, the subset X(k,l) of X, with k < ⌊log2 N⌋ and 1 ≤ l ≤ 2k, can
be summarized with one prototypical point xi ∈ X(kl). An easy choice for the
prototype is the point in X(kl) that lies the closest to the average of all points in
X(kl). Let x̄(kl) denote the prototype of node X(kl). Gathering all prototype on

each level k, we get data subsets X̄(k) = [x̄(kl)]1≤l≤2k of size N(k) = min(2k, N).
On the leaf level k = ⌊log2 N⌋, the full data set X is eventually considered.

Our proposal runs t-SNE without EE successively on {X̄(k),X}2≤k<⌊log2 N⌋
with perplexities K(k) = min(2k−1,K⋆) where K⋆ is user-defined. Notice that
the first run starts with four points (k = 2), which are initialized randomly
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with small variance, and a perplexity of 2. A call to t-SNE writes down into

Y
(T )
(k) = tsne(X̄(k),Y

(0)
(k),K(k), T ) for T = 1000 iterations of gradient descent.

The learning rate is fixed to N(k)

∑
k ̸=l qkl(1 + ∥yk − yl∥2)−1, which is a very

crude scalar estimate of the inverted Hessian matrix. In between two successive
runs k and k + 1, point mitosis is carried out by assuming that the children of
x̄(k,l) in X̄(k) are x̄(k+1,2l) and x̄(k+1,2l+1) in X̄(k+1). If ϵ1 and ϵ2 denote i.i.d. vec-

tors of Gaussian noise with small variance, then y
(0)
(k+1,2l) = 21/2y

(T )
(k,l) + ϵ1 and

y
(0)
(k+1,2l+1) = 21/2y

(T )
(k,l) + ϵ2, where ϵ1, ϵ2 ∼ N (0, (ν/6)2). As the embedding

can be freely centered, R̄ =
∑N(k)

l=1 ∥y(T )
(k,l)∥

2/N(k) is the average squared radius

and δ2 = R̄/N(k) is then a crude approximation to the expected squared dis-
tance between one point’s closest neighbor. The next T iterations then adjust
those offsprings’ locations in the embedding space, from slightly random to an
arrangement that reduces the KL divergence.

Conceptually, the above proposal resembles some previous approaches to the
problem of global structure preservation with methods of NE. The problem arises
from the considerable gap between initialization, where the global structure gets
captured by PCA or LE, for instance, and subsequent local processing with a
perplexity K⋆ ≪ N . The issue gets even worse in accelerated methods of NE,
where perplexities remain within the range from 5 to 100 while N can grow to
millions. Moreover tails of pij are typically truncated to make P sparse, making
fast NE even more local. Previous approaches include multi-scale NE [13, 14],
where several runs are carried out similarly, although all runs involves all points
in X and decreasing perplexities (⌊N/2⌋, . . . , 8, 4, 2). An accelerated version of
multi-scale NE [14] with space-partitioning trees introduces the idea of succesive
subsampling of X in the gradient computation only. The time complexities of
iterations are O(N2 log2 N) and O(N log22 N), respectively. Notice, however,
that those approaches start from large scale and add smaller ones progressively,
whereas the proposed method switches from one scale to the next, with the risk
of progressively forgetting the upper scales. The gain is a time complexity of
O(

∑
k N(k) log2 N(k)) ≈ O(N log2 N) for Barnes-Hut t-SNE [5] or even lower for

more recent accelerated variants [6]. The proposed method can also be related to
B. Fritzke’s work in the mid 90s, with growing-size neural networks [15]. From a
biological standpoint, inspiration stems from cell division in an embryo, whereby
large beings can get spatially organized from local interactions only.

4 Experiments, results, and discussion

In order to assess the proposed early hierarchization (EH) as an initialization for
t-SNE, several data sets are embedded in 2D, after PCA down to 16 dimensions.
Regular t-SNE is run for 1000 iterations with EE = 4; EH t-SNE is run for
500 iterations on each level, without EE. In addition to embeddings, the curves
RNX(K) = ((N−1

KN

∑
i |νKi ∩ nK

i |) − K)/(N − 1 + K) [13] are reported, where
1 ≤ K ≤ N is a neighborhood size and νKi and nK

i are the K-ary neighborhoods
of xi and yi, respectively. These curves allow inspecting both the local and global
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structures. The minimum value is 0 (not better than a random embedding on
average) and the maximum is 1 (perfect rendering of all K-ary neighborhoods
from HD to 2D). The area under the curves (AUCs) compounds local and global.

Figure 1 shows embeddings and quality curves for eight (subsampled) data
sets: (row 1) noisy circle as in [10] and MNIST, (row 2) COIL-20 and COIL-100,
(row 3) phoneme and google, (row4) Frey faces and Mouse RNA. The subsamples
contain N = 1000 ∼ 3000 points. Data dimensions range between 10 (8 noisy
dimensions for the circle) and 16384 (COIL). Local neighborhoods are almost
equally well preserved with the three initializations, while the curves differ for
the global structure where early hierarchization manages to dominate there in
most cases. Quantitatively, the AUCs are better for early hierarchization in 8/10
data sets; PCA and random initializations come 2nd and 3rd, respectively.
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Fig. 1: Embeddings & quality curves: (row 1) noisy circle & MNIST, (row 2)
COIL-20 & 100, (row 3) phoneme & google, (row4) Frey faces & Mouse RNA.

5 Conclusions and perspectives

Due to their local nature, t-SNE and most methods of NE critically depend on
their initialization and a first few iterations to prevent scrambling the global
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structure of data. Relying on PCA, Laplacian eigenmaps, or early exaggeration
hardly bridges the broad gap between global and local. The proposed approach,
coined early hierachization, relies shorter bridge spans and multiple intermediate
pillars between global and local. This is achieved with space-partitioning binary
trees, allowing a hierarchy of subsamples of sizes 4, 8, 16, . . . , N ; the transition
between two subsamples by point mitosis into its two children. Experimental
results show that early hierarchization slightly outperforms the legacy random
and PCA initializations of t-SNE. Early hierarchization also makes t-SNE simpler
and more self-contained (re-use of trees to search for KNNs, no call to PCA or
any other global method of DR like PCA), without changing its computational
complexity. Future work will extend to more and bigger data sets.
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