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Abstract. Collimation during radiography, which is the process of
defining the area to be radiated, is a crucial factor for the protection of the
patient and for the diagnostic quality of a radiograph. Moreover, incorrect
collimation is one of the main causes for a retake and the associated costs.
In this paper we propose a novel collimation optimization approach using
Time-of-Flight cameras and deep Neural Networks trained end-to-end to
increase the diagnostic quality of a radiograph. For this we acquired a
new dataset in a clinical environment consisting of depth images of the
lower leg and the abdomen. Using this dataset we are able to segment
depth images for the optimal collimation with an average IoU of 83%.

1 Introduction

Radiographs are still one of the most frequently used imaging modalities in
clinical practice. The most essential aspect for the patient’s health in such a
procedure is to reduce the radiation exposure to a minimum. This goal is the
basis for the ALARA (As Low As Reasonably Achievable) principle, regarding
the effective radiation dose. The collimation of the X-ray beam is an essential
tool for following the requirements of this principle as it directly influences the
effective radiation dose. While a too large collimation area of the X-ray beam
would expose the patient unnecessarily to radiation, a too small collimation area
would result in diagnostic relevant anatomies not being completely visible in the
radiograph, leading to a poor diagnostic quality and thus a retake. Therefore,
optimal collimation is a crucial factor for the protection of the patient and
diagnostic quality of the radiograph.

In clinical practice collimation is done by radiographers. However, time
pressure, inexperience, patients with irregular body shapes or patient movement
after collimation are reasons why collimation is often not ideal. Various studies
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show that in many cases the radiation dose is unnecessarily high due to incorrect
collimation [1, 2, 3, 4]. The authors of [3] show that, after incorrect patient
positioning, a too small collimation area is the main reason for the need of a
retake, since diagnostic relevant anatomies may not appear in the radiograph.

In this paper, we propose an approach that uses Time-of-Flight (ToF) cam-
eras to capture depth images of the patient and train deep Neural Networks to
directly predict the optimal collimation. To evaluate our approach, we acquired
a total of 1020 depth images of the anterior posterior (a.p.) view of the ab-
domen and the upper ankle joint during a recreation of the clinical process of
radiographing these anatomies. Due to regulatory and legal challenges, it was
not readily possible to capture the corresponding radiograph in addition to the
depth images, nor was it possible to mount the cameras in the clinical process,
to obtain both. These radiographs could have been used to obtain a label for
correct collimation. Instead, the correct collimation was directly labeled based
on the depth information in close exchange with experienced radiographers.
The application of this approach in clinical practice could support the collima-
tion decisions of radiographers, reducing the radiation dose for the patient and
improving the overall workflow and diagnostic quality.

2 Related Work

While there is already research regarding the determination of the optimal col-
limation on radiographs [5, 6], at this point the possibly bad radiograph has
already been made. In [7] an approach is presented to learn the optimal col-
limation based on depth images. Since the authors’ dataset consists of 177
depth images and radiographs of the chest in a.p. and lateral view, they were
able to label on the radiograph. However, for this, they used landmarks as
handpicked features instead of directly labelling the collimation. This leads to
dividing the problem into a landmark detection, implemented as boosted tree
classifiers, and a multivariate regression problem, for the actual collimation area
prediction. With such an approach an end-to-end training becomes impossible.
In contrast, we present an end-to-end trainable deep learning approach that
is able to leverage depth information from multiple cameras and evaluate its
functionality for two anatomies. Furthermore, by labelling the actual collima-
tion area, our approach requires less label effort. To our knowledge, there are
no other studies that automatically optimize the collimation before exposure to
radiation.

3 Dataset

Since there was no public dataset in which subjects were captured under an X-
ray device using depth cameras, a novel dataset was acquired for this work. For
this purpose, two Microsoft Azure Kinect cameras were attached directly to the
X-ray tube in an X-ray room used in everyday clinical practice. The two cameras
were mounted on both ends of the X-ray tube to avoid possible occlusions of the
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patient. Using this setup, four subjects (three male, one female) were captured
in various typical poses of the upper ankle or abdomen in each case in the
a.p. view on the X-ray table. A notable feature of our dataset is the inclusion
of positions in which subjects had not yet moved to the correct position for
radiography. After sorting out unusable images a total of 510 depth image pairs
(216 upper ankle, 294 abdomen) were selected for the dataset. To aggregate
information from both cameras, these pairs of depth images were converted
into one registered point cloud. Optimal collimation was then labeled on these
merged point clouds, in close exchange with experienced radiographers. Based
on these data, 10 augmented point clouds and 10 augmented depth images
together with the augmented label were created from each merged point cloud
for training. Including the augmented data the dataset contains 2376 labeled
point clouds and depth images of the upper ankle a.p. view and 3289 of the
abdomen a.p. view. Figure 1a visualizes the described dataset creation process.

3.1 Point Cloud Generation

Since the original point clouds contain a lot of unnecessary information, all
points further than 1.5m from both ToF cameras were removed. Before re-
moving the points, the positions of the camera are translated randomly by up
to 25cm, which corresponds to a translation of the X-ray device before the
exposure. From the remaining points, 75,000 points were then sampled using
furthest-point-sampling to create a uniformly distributed point cloud.

3.2 Depth Image Generation

To obtain a single depth image containing information from both cameras and
avoiding a multiview-problem, a synthetic depth image was rendered from the
merged point cloud. For this the origin of the central beam was chosen as
the camera position, since the optimal collimation can be determined from this
perspective. In order to create the synthetic depth image, the labeled optimal
position of the X-ray device is randomly translated by up to 25cm and then
the depth image is rendered from the new position. While the Azure Kinect
captures depth images at a resolution of 640 x 576, we rendered the images at
half that resolution, which helps to reduce invalid points in the rendered images.

4 Experiments and Training

We implemented and tested different architectures suitable for our task. In
all cases the prediction was modeled as a segmentation task using the pixel-
wise/point-wise labels. For the point clouds as input data we used the PVCNN++
[8] with a PointNet++ [9] as backbone. For the depth images as input data, we
used a UNet++ [10] as a state-of-the-art segmentation model. The training pro-
cess was identical for all models of one input modality, but differed slightly
across image and point cloud based networks. Both networks were trained in-
dependently for both anatomies using the Cross Entropy Loss as loss function
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for a point-wise/pixel-wise classification in the classes collimation and no col-

limation. For the point cloud models the Adam [11] optimizer with an initial
learn rate of 1 · 10−3 and a batch size of 16 was used for training for 400,000
iterations. The learning rate was decreased 3 times by a factor of 10, at 250,000,
300,000 and 350,000 iterations. For the depth images, we used the stochastic
gradient descent with 1 ·10−3 as learning rate, a momentum of 0.9 and a weight
decay of 1 · 10−6. The network was trained for 350,000 iterations using a batch
size of 32 with the learning rate decreased 3 times by a factor of 10 at 200,000,
275,000 and 325,000 iterations. From the four subjects of the dataset, one was
randomly chosen before the training process and specified as test set and one as
validation set. For the final training process we trained on all three subjects and
tested on the initially selected test subject 5 times with random initializations.

(a) (b)

Fig. 1: (a) Dataset creation: 1. acquire depth images, 2. merge them into a
registered point cloud and label them and 3. create augmented depth images and
point clouds. (b) Collimation prediction examples. True positive pixel/points
are colored in green, false positives in red and false negatives in blue.

5 Results and Discussion

We modeled the problem as segmentation task and measured the accuracy of
the prediction using the Intersection over Union (IoU) metric. In order to en-
able a more precise evaluation with regard to a too small/large collimation, the
specificity and sensitivity are also measured in addition to the pixel-wise accu-
racy. A sensitivity close to 100% indicates that the area of labeled collimation
is almost completely correctly covered. A high specificity, on the other hand,
indicates that not much area was exposed unnecessarily. Since it is preferable
to choose a collimation slightly larger than absolutely necessary than to have to
repeat the acquisition due to a collimation being too small, a higher sensitivity
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Table 1: Results for both anatomies and both input modalities respectively. It
is visible that high IoU scores can be achieved for both anatomies.

Metric
upper ankle abdomen

point cloud depth image point cloud depth image

IoU [%] 81.63±0.70 78.76±0.31 83.81±0.61 88.47±0.48
Accuracy [%] 99.39±0.03 99.68±0.01 98.12±0.08 98.85±0.05
Sensitivity [%] 92.37±0.54 91.21±0.41 92.50±0.26 96.11±0.38
Specificity [%] 99.61±0.03 99.79±0.01 98.80±0.08 99.15±0.05
FN/FP Ratio 0.60±0.07 0.57±0.05 0.75±0.05 0.48±0.06
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Fig. 2: (a) shows the distribution of the ratio of the predicted collimation to
the optimal collimation. The majority of the results are slightly above the ideal
value of 1 with the mean value of 104.97% and 107.69% for abdomen and upper
ankle on depth images as well as 103.22% and 106.07% on point clouds. (b)
shows the cropped ROC curve for depth images and different discrimination
thresholds.

is more important than a higher specificity. Table 1 shows that for both point
clouds as well as depth images high IoU scores are achieved for both anatomies.
As it can be seen in Figure 2a the collimation prediction is on average only
4.09% too large for abdomen and 6.88% for the upper ankle regarding the op-
timal collimation. While not directly compareable due to the different target
anatomies, this is significantly less than the 26% from [4]. The results also show
that the absolute number of false negatives is already significantly below the
false positives (see FN/FP Ratio in Table 1). In Figure 2b, the relationship
between specificity and sensitivity with respect to different thresholds can be
seen for depth images. The mean AUC value of 99.72% supports that a correct
classification can be achieved with a high probability. In Figure 1b random
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chosen example collimation predictions on point clouds and depth images from
the same pose are shown. Our results show that for both anatomies, precise
segmentation of the optimal collimation can be achieved with an IoU of up to
88% being on average only 5.49% larger than the optimal collimation. It is
even possible to train our approach without any adjustment if a radiograph is
available for more accurate labeling. In addition, the presented approach can
also be transferred to any other body parts. This could furthermore reduce the
patient’s exposure to radiation and improve the overall workflow in radiography.
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