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Abstract. The multi-view learning deals with data of multiple views,
aiming to explore the underlying relations between different views and use
them for various tasks. In this paper, we derive a multi-view extension of
kernel partial least squares for unsupervised feature learning. We establish
the optimization objective in the primal as the pairwise covariance between
the projection scores and derive that this model can be trained in the dual
form by solving an eigenvalue problem. Experiments are also conducted
to verify the effectiveness of the method with real-life multi-view datasets,
where the proposed method is adopted as a feature extractor and then the
clustering task is conducted for performance comparisons.

1 Introduction

The Partial Least Squares (PLS) is a well-known technique that seeks the lin-
ear combinations of two sets of variables by maximizing the covariance of the
projections [1]. The kernel version of PLS (KPLS) was derived for nonlinear-
ity [2]. The Least Squares Support Vector Machine (LSSVM) formulation of
KPLS was also introduced [3]. A related method is the Kernel Canonical Cor-
relation Analysis (KCCA), which maximizes the correlation metric [4], and can
be solved by a generalized eigenvalue problem [3]. Kernel Principal Components
Analysis (KPCA) is another method closely related to KPLS, where the fea-
tures are learned by capturing the maximal variances of the given data [5]. It
has been elucidated that KPLS can also be interpreted as learning two KPCA
and meanwhile pursuing the maximal covariance of their projections [6].

The multi-view learning has proven to be successful in numerous applica-
tions [7, 8, 9, 10]. Multi-view data have different views, i.e., each sample can
have multiple representations. Multi-view learning takes advantage of the re-
lations between different views and looks for underlying patterns of the data
with richer information. Both (kernel) CCA and PCA have been extended to
multi-view cases. Tensor models have also been introduced to multi-view KCCA
and KPCA for capturing high-order correlations [11, 7]. Classical KPLS deals
with 2-view data in the supervised regression task, where the two views are
collected as the inputs and the responses. Although PLS was also extended to
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multi-view versions, they either still focus on supervised tasks in establishing
the methodology [12, 13, 14], or only consider the linear PLS [15]. In this work,
we propose a multi-view kernel extension of PLS under unsupervised settings,
where the features of each view are jointly learned by aligning with the spirits in
PLS, i.e., the maximization on the pairwise covariance. In such a way, a novel
feature learning method for multi-view data is established.

2 Multi-view Kernel Partial Least Squares

In this section, we introduce the formulation of multi-view kernel PLS, namely
MvKPLS. We first start from the LSSVM formulation of the classical KPLS.
Compared to KCCA, the objective of KPLS looses the squared terms of the
projection scores and only keeps the pairwise coupling [3, 6]. The objective is
then extended to the multi-view version, i.e., MvKPLS. Let V be the number

of views, N be the number of samples in each view. Given the dataset {x[v]
i ∈

Rd[v]}Ni=1 with v = 1, . . . , V , the primal objective is formulated as

max
w[v],e

[v]
i

J := −1

2
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w[v]⊤w[v] + γ

∑V
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[v]
i

s.t. e
[v]
i = w[v]⊤φ[v](x

[v]
i ), i = 1, . . . , N, v = 1, ..., V

(1)

where w[v] ∈ Rp[v]

are the primal model variables, e
[v]
i denote the projection

scores, φ[v] : Rd[v] → Rp[v]

is the feature map for the v-th view, d[v] and p[v] are
the corresponding dimensions of the input spaces and feature spaces, and γ is
the regularization constant. This objective can be interpreted as to seek for the
joint maximization on the pairwise couplings of the projections from different
views.

The Lagrangian is obtained by introducing dual variables, i.e., the Lagrangian

multipliers α
[v]
i ∈ R, such that

L = J −
∑V
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∑N

i=1
α
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i −w[v]⊤φ[v](x

[v]
i )) (2)

By taking the partial derivatives of (2), the Karush-Kuhn-Tucker (KKT) condi-
tions are obtained as

∂L
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N∑
i=1
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which yields λα
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j K [u](x

[u]
j ,x
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i ) where λ ≜ 1/γ, and the

kernel function K [v](x,y) ≜ φ[v](x)⊤φ[v](y) for view v. Hence, the solution in
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the dual is given by:
0 K2 · · · KV

K1 0
. . .

...
...

. . .
. . . KV

K1 · · · KV−1 0


︸ ︷︷ ︸

Ω

α[1]

...
α[V ]

 = λ

α[1]

...
α[V ]

 (3)

with α[v] ∈ RN defined as α[v] ≜ [α
[v]
1 , . . . , α

[v]
N ]⊤ and the kernel matrix Kv ∈

RN×N defined as Kv = [K [v](x
[v]
i ,x

[v]
j )]. Given a data point x̃[v], the dual model

representation (out-of-sample extension) for the v-th view is then obtained as

e[v](x̃[v]) =
∑N

i=1
α
[v]
i K [v](x

[v]
i , x̃[v]), (4)

with the dual variables α
[v]
i optimized from (3), where the information of all the

views is taken into consideration as seen from the kernels in the matrix Ω.
The constrained optimization problem in the primal is now transformed into

an eigenvalue problem in the dual. With the dual formulation, the regular-
ization constant γ can then be automatically chosen as the reciprocal of the
positive real eigenvalues and we do not need to explicitly compute the possibly

high dimensional feature mappings φ[v](x
[v]
i ). Calculating the kernel matrices

gives a computational complexity of O(V N2d) where d is the average input di-
mensions of all views [10]. Solving the eigenvalue problem in equation (3) leads
to V N eigenvalues with the corresponding N -dimensional features for each view
and gives a computational complexity of O(V 3N3). In practice, the dataset
can have informative features in low dimensions, so we can keep only the first
dimensions of features, as shown in the following experiments in this paper.
Suppose k dimensions are chosen, the computational complexity can be reduced
to O(V 2N2k). The proposed MvKPLS is applied as a feature extractor in this
work, where the features with informative data patterns can be leveraged in the
downstream tasks to benefit performances.

3 Experiments

This section describes the experiments performed to examine the proposed MvK-
PLS method. We consider our MvKPLS as a feature extractor and compare it
to other methods based on the performance of the downstream tasks using the
extracted features. In this work, we proceed with clustering as the downstream
task. With extracted features, two classical clustering methods are considered:
k-means (KM) [16] and spectral clustering (SC) [17]. To evaluate the clustering
performance, we use the Normalized Mutual Information (NMI), which mea-
sures how similar two clusterings are. We compare MvKPLS with KPCA. We
also compare with the results when clustering is directly applied to the data. In
the experiments, we use 3 multi-view datasets: the image-caption dataset [7],
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the 3 Sources dataset1, and the YouTube video dataset2. The views of these
datasets represent colors, texture, term frequencies of words and so on[18, 19].
Each sample is annotated with a specific label. We split the datasets into 60%
training data, 20% validation data and 20% test data. Based on the cluster-
ing performance on the validation set, the kernels are carefully chosen, and the
kernel-specific parameters are tuned. For KPCA and MvKPLS, we set up two
experiments to examine the number k of extracted features: k = 10 and k is the
number of components capturing about 95% explained variance. We compute
the NMI scores for each view and the results are presented in Table 1, Table
2. Further, we also evaluate the NMI scores for KPCA and our MvKPLS by
averaging the features when setting up k = 10 and report the overall evaluation
of the methods for each dataset as shown in Table 3, as it is more common to
have a consensus for the results in multi-view learning; for the k determined by
the explained variance, k can be different for each view in KPCA, and we thus
omit it. For each dataset, the highest NMI score (best view) for each method
is underlined, and the best performance among all methods for each dataset is
shown in bold.

Table 1: The NMI results of different methods on the test sets. k = 10 for both
KPCA and MvKPLS.

Method Image-caption 3 Sources YouTube video
View 1 2 3 1 2 3 1 2 3

KM 0.502 0.297 0.174 0.263 0.158 0.052 0.335 0.190 0.037
KPCA+KM 0.633 0.234 0.439 0.519 0.558 0.512 0.131 0.232 0.121

MvKPLS+KM 0.574 0.572 0.475 0.627 0.537 0.601 0.470 0.443 0.342

SC 0.003 0.005 0.005 0.526 0.182 0.083 0.504 0.181 0.083
KPCA+SC 0.594 0.283 0.356 0.390 0.505 0.275 0.091 0.258 0.115

MvKPLS+SC 0.580 0.381 0.373 0.535 0.525 0.389 0.585 0.627 0.593

The results in Table 1 and Table 2 show that in most cases, MvKPLS gives
the best NMI scores. One can also see that compared to the direct clustering
on the original data, KPCA and MvKPLS both give higher scores, implying
that they indeed extract useful information from the data and can thus express
the samples in a compact and informative way in subspaces. When k is chosen
according to the explained variance, MvKPLS has slightly worse results than
KPCA in some views such as the second view of the YouTube video dataset
when k-means is used. This might be caused by the extremely large value of
k: in the YouTube video dataset, k = 1236, which can lead to significant noise.
Further, Table 3 shows that when doing the clustering on the averaged features
with an overall evaluation on each dataset, MvKPLS distinctively outperforms
KPCA, indicating ours is better at catching the underlying relations across views.

1http://mlg.ucd.ie/datasets/3sources.html
2https://archive.ics.uci.edu/dataset/269/youtube+multiview+video+games+dataset
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Table 2: The NMI results of different methods on the test sets. k is chosen such
that 95% of variance is explained.

Method Image-caption 3 Sources YouTube video
View 1 2 3 1 2 3 1 2 3

KM 0.502 0.297 0.174 0.263 0.158 0.052 0.335 0.190 0.037
KPCA+KM 0.637 0.259 0.390 0.292 0.445 0.494 0.085 0.231 0.131

MvKPLS+KM 0.733 0.024 0.224 0.615 0.632 0.549 0.400 0.027 0.095

SC 0.003 0.005 0.005 0.544 0.180 0.082 0.504 0.181 0.083
KPCA+SC 0.584 0.278 0.331 0.247 0.360 0.381 0.161 0.248 0.104

MvKPLS+SC 0.580 0.544 0.336 0.569 0.523 0.381 0.552 0.265 0.108

Table 3: The NMI results of different methods on the test sets, when the ex-
tracted features are averaged. k = 10 for both KPCA and MvKPLS.

Method Image-caption 3 Sources YouTube video
KPCA+KM 0.518 0.520 0.166

MvKPLS+KM 0.584 0.587 0.492

KPCA+SC 0.441 0.400 0.196
MvKPLS+SC 0.625 0.571 0.616

These experiments together demonstrate the potential of KPLS in multi-view
feature learning.

4 Conclusion

This paper introduced the multi-view kernel partial least squares method to
perform KPLS on multi-view data as a feature learning technique. The model is
characterized in the LSSVM setting, which maximizes the pairwise covariances
between views and leads to an eigenvalue problem involving multiple kernel
matrices in the dual. Numerical experiments are conducted where the method
extracts information from multi-view data before downstream clustering. The
results have shown the proposed model performs well on multi-view data. As
a future study, it would be interesting to investigate more properties of the
solutions due to the asymmetry in the eigenvalue problem. It would also be
intriguing to introduce the learnable neural networks as the feature maps in
the primal form (such as in Primal-Attention for Transformers [20] with kernel
singular value decomposition setups [21]), so that the model becomes parametric
and can be optimized by algorithms like stochastic gradient descent.
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