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Abstract.

Temporal Knowledge Graphs (TKGs) organize dynamic real-world facts,
adding a time dimension to the multi-relational graph structure of Knowl-
edge Graphs (KGs). We leverage the expressive power of graph convolu-
tional networks (GCNs) for modeling TKGs, recognizing similarities with
handling graph-structured data and utilizing complex geometry. Our ap-
proach emphasizes compositional interactions between relations and enti-
ties, integrating a diachronic mechanism to enhance representation with
both graph structure and temporal dynamics. Experimental results on
benchmark datasets, employing various composition operators, showcase
the effectiveness of our model in link prediction tasks.

1 Introduction

Knowledge Graphs (KGs) are effective representations of real-world entities and
relationships, but they struggle to accommodate dynamic changes in reality.
Static KGs fail to accurately depict facts or events that evolve over time, as
illustrated by the changing U.S. presidents in the triplet (?, president of, US).
Temporal Knowledge Graphs (TKGs) address this limitation by incorporating a
time dimension, enabling them to capture evolving facts and events more effec-
tively. Despite their enhanced capabilities, TKGs often remain incomplete due
to their dynamic nature, underscoring the importance of Temporal Knowledge
Graphs Completion (TKGC) for uncovering new insights.

Previous studies like ComplEx-GNN [1] and ComplexGCN [2] have shown
the potential improvement of using complex numbers in Knowledge Graph Em-
bedding (KGE) to model entities and relations. These works modified graph con-
volutional networks (GCNs) to handle complex values, focusing on entities but
neglecting relation information. Our research extends this by employing Graph
Neural Networks (GNNs) to model relation-aware interactions using various op-
erators, showcasing the power of complex geometry. Additionally, we incor-
porate temporal features into entity and relation embeddings using Diachronic
Embedding (DE), aiming to enhance link prediction accuracy in Temporal KGE
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399

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



(TKGE). This approach enriches understanding of temporal dynamics and im-
proves embedding quality for more effective link prediction.

Our main contributions to this work are as follows:

• We propose a novel CE-CGCN model designed for learning complex rep-
resentations of multi-relational TKGs with time-dependency using GCNs,
filling a gap in existing models.

• We build a variaty of complex-valued composition operators to illustrate
the expressiveness of complex space in relation-aware TKGE, highlighting
the versatility and potential of complex geometry in modeling intricate
relationships.

• The model is validated through experimentation on two benchmark datasets
showing its effectiveness for link prediction.

2 Related work

Link prediction on TKGs is crucial for predicting missing links where facts
change over time. Several methods have explored complex geometry in KGE
models for enhancing link prediction tasks in TKGs. For example, ComplEx-
GNN [1] and ComplexGCN [2] showed that leveraging complex numbers im-
proves the representation of entities and relations, but they neglected relational
information, limiting their ability to model dynamic relationships effectively.
Models like RotatE [3] used complex numbers for rotational transformation but
struggled with more complex patterns.

Recent TKGC research focuses on incorporating temporal features into em-
beddings. DE [4] approaches highlighted the importance of time-dependent dy-
namics. Similarly, TComplEx [5] extended the ComplEx model [6] to tem-
poral settings, but often lacked integrated mechanisms for complex interac-
tions. LorenTzE [7] expand the temporal dependency into the high-dimensional
Lorentz, but neglected the graph structure information; HGAT [8] use RGCN
to enrich the entity representation with relation-aware and hierarchical-aware
mechanism; HyTE [9] used hyperplane-based, improving performance but fac-
ing challenges in intricate interactions within complex geometry.

Overall, TKGC research emphasizes dynamic and relation-aware models that
capture the evolving nature of knowledge graphs. The strengths and weaknesses
of previous models highlight the potential for innovative use of complex geome-
try, DE, and efficient performance on benchmarks. Our paper aligns with this
goal, proposing an improved model that enhances representation learning and
dynamic interaction modeling.

3 Methodology

Preliminary and Notation: We denote TKGs as G(E ,R,F , T ) where E is the
set of entities, R is the set of relations, T is the set of all timestamps, and F is
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the set of positive quadruplets. For complex numbers, let z = a+ bi ∈ C where
Re(z) = a, Im(z) = b represent for the real and imaginary part correspondingly.

Fig. 1: The overall architecture of CE-CGCN includes 6 main components cor-
responding with 6 main stages for link prediction progress.

Fig. 1 illustrates the overall architecture of CE-CGCN. Initially, we embed
the entities E and relations R into complex geometry as Wre and Wim. After
Xavier’s initialization [10], we conduct relation-aware representation learning us-
ing Complex-valued CGCN. Next, we introduce a new Complex-valued DE to
enrich the representation with temporal features. Finally, we utilize the Com-
plEx scoring function to evaluate the plausibility of forming quadruplets.

3.1 Complex-valued CGCN

Based on the foundation model of CompGCN [11] on the real space, we utilize
three separate relation-type matrices Wλ(r) to model three types of relations
λ(r), including the base (source) relation Rsrc, its reverse Rinv, and self-loop
R⊤, and formulate two composition operations on the complex geometry, which
take the entity and relation-type specific complex vectors as input:

Subtraction:

φ(hs,hr) = hs − hr = Re(hs)− Re(hr) + i(Im(hs)− Im(hr)) (1)

Multiplication:

φ(hs,hr) = hs ∗ hr = Re(hs)Re(hr)− Im(hs)Im(hr)

+ i(Re(hs)Im(hr) + Im(hs)Re(hr)) (2)

In the update phase at Eq. 3, neighbor information is aggregated based
on complex multiplication of Wλ(r) and φ(·). Then, we perform relation-type
awareness by ensuring that each dot-product embedding equally contributes to
the entity embedding. After applying the activation function σ, we obtain the
final entity embedding hl

o at the l-th layer. The equations below demonstrate
the progression for both the real and imaginary components:
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hl+1
o

(c)
= σ

 ∑
(s,r)∈N (o)

Wλ(r)φ(h
l
s,h

l
r)

 (3)

hl+1
r

(d)
= Wrelh

l
r (4)

where N (o) is the set of outgoing edges from node o. Meanwhile, (d) arises from
the relation updating phase, with Wrel being the relation embedding matrix.

3.2 Complex-valued DE

We introduce the Complex-valued DE, an entity and relation-specific DE method
based on DE [4], which allows parameter-sharing and control over the γ fraction
of static and temporal features over time. Let zt[i] ∈ zt denote the vector
embedding zt of the i-th component in the temporal embedding for both entities
and relations, and ao, wo, and bo represent relation-entity specific vectors. The
activation function σ uses sine for the imaginary component and cosine for the
real component. Finally, we concatenate the static and temporal representations
to obtain the temporal dependency embedding:

zto[i] =
∑
ti∈t

ao[i]σ (wo[i]ti + bo[i]) (5)

ho =
[
hl
o || zto

]
(6)

3.3 Complex scoring function

We utilize the ComplEx [6] scoring function, which exploits intricate interactions
in complex geometry. Then, minimize the loss using the Cross Entropy Loss.

ϕ(s, r, o) = Re(hr)Re(hs)Re(ho) + Re(hr)Im(hs)Im(ho) (7)

+ Im(hr)Re(hs)Im(ho)− Re(hr)Im(hs)Re(ho)

4 Experiment

4.1 Setup

Dataset and Metrics: We employ two standard benchmark datasets for the
link prediction task: ICEWS14 [12] and ICWES05-15 [12], which provided statis-
tics on Table 1. Furthermore, we evaluate the performance using Mean Recip-
rocal Rank (MRR) and Hits@K (1, 3, 10).
Baselines and Implementation: We compare our work with some static mod-
els: RotatE and ComplEx. For temporal baselines, we compare CE-CGCN with
DE models and other models mentioned in section 2. We used PyTorch version
1.13.1. The hyperparameters include learning rate, embedding size, GCN size
and γ is used to control the static and temporal contribution correspondingly.
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Dataset |E| |R| |T | |F| |Ftrain| |Fvalid| |Ftest|
ICEWS14 6869 230 365 96730 72826 8941 8963
ICEWS05-15 10094 251 4017 461329 368962 46275 46092

Table 1: Dataset statistics

Model
ICEWS14 ICWES05-15

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
ComplEx .470 .350 .530 .700 .490 .370 .550 .720
RotatE .418 .291 .478 .690 .304 0.164 .355 .595
TTransE .227 .072 .301 .582 .243 .086 .315 .609
TA-DisMult .477 .363 - .686 .474 .346 - .728
HyTE .297 .108 .416 .655 .316 .116 .445 .681
LorenTzE .320 .102 .470 .704 .354 .168 .471 .708
HGAT .389 .297 .424 .564 - - - -
DE-TransE .326 .124 .467 .686 .314 .108 .453 .685
DE-DistMult .501 .392 .569 .708 .484 .366 .546 .718
CE-CGCN .529 .423 .596 .723 .492 0.373 .553 .726

Table 2: Link Prediction results on the ICEWS14 and ICEWS05-15 datasets

4.2 Results

In Table 2, our model achieves the best performance in all metrics (except H@10)
on both datasets. On ICEWS14, the CE-CGCN model outperforms the static
models, which demonstrates the importance of temporal dependency embeddings
produced by the Complex-valued DE. Additionally, compared to DE-TransE
and DE-DisMult models, our approach achieves nearly 29.9% and 3.1% higher
Hits@1, and 2.6% higher Hits@10 on average, which confirm the ability to en-
rich representations by integrating complex-valued embeddings and composition
operators in GCNs. Regarding ICWES05-15, our model surpasses LorenTzE
and DE models, achieving approximately 10.5% higher performance on average
compared to these three aforementioned models. By leveraging the intricate
interactions within complex geometry using GCNs, CE-CGCN demonstrates ef-
ficiency compared to high-dimensional space approach like Lorentz.

Fig. 2: The training loss curves for the ICEWS14 and ICEWS05-15 datasets

As shown in Fig. 2, the loss curve for ICEWS05-15 consistently remained
lower than that of ICEWS14. Training convergence occurs rapidly within the
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first 200 epochs but requires at least 400 epochs on both benchmark datasets.

5 Conclusion

In this paper, we have presented CE-CGCN, which leverages the latent interac-
tions between relations and entities through various composition operations in
complex geometry. The experimental results have demonstrated the effective-
ness of integrating complex-valued representations with temporal dynamics for
TKGC. In the future, we investigate into the time evolution tendencies during
the GCNs updating phase.
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