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Abstract. We introduce Physics-Aware Normalizing Flows, a novel
framework combining data-driven generative modeling with a physical
layer based on an Electric Circuit Model, ensuring adherence to electric-
ity laws, sample fidelity, and explainability. Four existing Normalizing
Flow architectures, including Real-NVP and NSF, were adapted to our
adversarial regime and evaluated with promising results for the ad hoc
determination of value ranges of physical quantities and the generation of
labeled measurements based on an unlabeled dataset. By extensive data
generation according to our self-explainable approach, Random Forest re-
gressions of underlying physical quantities could be improved significantly,
compared to the original dataset including omitted ground truth labels.

1 Motivation

Lately, generative artificial intelligence has attracted a high level of public at-
tention. Despite the emergence of high-performing models, however, significant
weaknesses in these methods have been revealed, such as hallucination [1] and
violation of causal relationships and real-world conditions [2]. Approaches that
integrate explicitly represented knowledge with purely statistical generative tech-
niques have therefore gained increasing interest recently [3].

An important approach in this regard is the development of physics-aware
generative modeling [2], which strengthens the credibility of the generated data
as well as the explainability of the models themselves. To this end, invertible
flow-based generative models, i.e. Normalizing Flows (NF) [4], deserve special
attention due to their built-in self-explainability with support for both sampling
and probability density estimation [5], as well as continuous improvements in
modeling capacity and quality of the generated samples [6, 7, 5].

One way to strengthen the integrity of generated data is to embed physical
models in NFs. This allows ad hoc synthesis of labeled training data using the
physical forward model and an unlabeled dataset. Particularly in the field of
impedance spectroscopy, where electrical circuit models are used to explain ob-
served measurements, the determination of the corresponding parameter values
remains a challenge, but one that can be solved by supervised learning [8]. In the
following, a novel approach to combine NFs with physical models is presented,
exemplary for electric circuits, but adaptable for a wide range of forward models.
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2 Normalizing Flows

2.1 Preliminaries

Normalizing Flows (NFs) are a class of generative models that define a trans-
formation of a simple probability distribution (usually a multivariate Gaussian)
with density pZ into a more complex distribution with density pY [4]. Given a
random variable Z with probability density function pZ(z) defined over RD, an
NF is a parametric function gθ such that gθ(z) = y, where y is the transformed
variable, subject to the following conditions:

i) gθ is invertible and differentiable.
ii) y follows a probability distribution pY (y) over RD.

Analogous to neural networks, the capacity of NFs can be increased by stacking
several layers making g a composition of several sub-functions gi, each of which
must be invertible and differentiable. More intricate interrelations within pY (y)
can be captured via coupling, where in each layer gi one subset of dimensions is
treated as independent while the other is conditioned on the former, with this
relationship mapped by a neural network with trainable parameters.

pZ is tractable, as we can both draw samples using gθ(z) = y as well as
compute the probability density pY (y) of a sample y using the inverse function
f = g−1 according to the change of variable formula:

pY (y) = pZ(f(y)) · | detD(f(y))| (1)

where D(f(y)) is the Jacobian Matrix of f(y).

NFs can therefore be utilized bidirectionally, with g representing the ‘generating’
direction and f the ‘normalizing’ direction, which is essential for computing
likelihoods and the classical training of NFs.

2.2 Training of Normalizing Flows

Classically, NFs are trained using maximum likelihood estimation (MLE), where
the expected negative log-likelihood of the observed data under the model is
minimized, commonly using stochastic gradient descent:

min
θ

− Ey∼pY
[log fθ(y)] . (2)

NFs can be trained without using f , instead by employing an adversarial neu-
ral network, the discriminator dϕ, which learns to differentiate the data dis-
tributions of synthetic and real data by approximating their Wasserstein-1 dis-
tance [9]. dϕ is counter-optimized, leading to the following minimax objective:

min
θ

max
ϕ∈F

Ey∼pY
[dϕ(y)]− Ez∼pZ

[dϕ(gθ(z))] (3)

where F is defined such that dϕ is 1-Lipschitz.
Adversarial training shows superior sample quality but poorer distribution cov-
erage of the training data compared to classic NF [9]. Furthermore, adversarial
training is notorious for being difficult to train, which is particularly evident in
non-convergence and mode collapse [10].
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3 Physics-Aware Normalizing Flows

3.1 Integrating Electric Circuits as a Physical Layer

In this work, an Equivalent Circuit Model (ECM, Fig. 1) is used as an explana-
tory model for spectral impedance data. ECMs play an important role in the
investigation of charging processes and the state of health of batteries, through
to the characterization of biological tissue and inflammatory diseases. In ac-
cordance with the given ECM (Fig. 1), impedance spectra can be derived as
a function of the circuit elements Re, Rs and Ce as well as a given set of AC
frequencies ω = {ω0, . . . , ωK}:

Zω(R
e, Rs, Ce) =

(
Re

1 + jωkCeRe
+Rs

)
k=0,...,K

where j =
√
−1. (4)

If we (i) constrain the codomain of gθ to RD
+ , and (ii) set D = 3, i.e. adjust the

dimension of the NF to the number of model parameters of the ECM, you can
now add equation (4) as an additional layer to the NF:

g̃θ,ω = Zω ◦ gθ where gθ : R3 → R3
+ and Zω : R3

+ → CK . (5)

Note that g̃θ,ω is still differentiable but, unlike g, no longer invertible, yet we
retain the ability to train g̃θ,ω within an adversarial regime:

min
θ

max
ϕ∈F

Ey∼pY
[dϕ(y)]− Ez∼pZ

[dϕ(g̃θ(z))]. (6)

This principled framework applies to all NF architectures and aligns with work
towards the generalization of adversarial learning [11]. Also, Zω can be ex-
changed with any other non-invertible but differentiable function.

3.2 Implementing the Adversaries

Using the nflows python package four NFs were extended according to 3.1:

a) DiagonalFlows[5] perform a dimension-wise scaling and shifting.
b) LinearFlows[5] model co-dependencies as a linear transformation.
c) RealNVP [6] employ multiple affine transformations.
d) NSF [7] uses rational quadratic splines as invertible transformations.

Real-NVPs and NSFs were implemented with coupling to map dimension-inter-
relations, parameterized by dense Resnets. An additional scaling layer, analo-
gous to a DiagonalFlow, was appended at the end of the other NFs to improve
training stability.

Adversarial Learning is carried out by Wasserstein-Discriminators with gra-
dient penalty [12], implemented as multilayer perceptrons. Minibatch-discrimi-
nation [13], sample packing [14], gaussian instance noise [10], spectral normal-
ization [15], and multiple discrimination steps have proven to be essential for
successful training. Based on previous work, finite differences were used as ad-
ditional discriminatory features [11]. Additional penalty terms were introduced
to enforce positive capacitances and resistances (satisfying equation (5)) and to
avoid peaked distributions with low deviation.
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Fig. 1: Left: Equivalent Circuit Model employed within this work, consisting of two
resistors and one capacitor. Right: Capacitance Ce plotted against Resistances Re and
Rs for truth and modeled data as 2D histograms (5000 Samples each, 30× 30 bins).

4 Proof-of-Concept Study

4.1 Setup and Evaluation

We employ published spectral impedance measurements modeled after the cell
line HT29B6 under control conditions [8], which provides access to the ground
truth ECM values during validation. To reflect real data availability, only 5000
random samples were used for training, whereas 50,000 original and generated
samples were used for validation by computing the Kolmogorov-Smirnoff statis-
tic (1D-KS ), a two-dimensional KS approximation [16] (2D-KS ), and the Cor-
relation Similarity using Pearson Coefficients (CS ). We assess the Supervised
Learning performance (SLP) of each generated dataset with Random Forests,
consisting of 50 estimators, trained on the generated and tested on the original
data, by computing the Mean Absolute Percentage Errors (MAPE ) in predicting
all ECM values, with SLP being the average over all targets. For each NF archi-
tecture, hyperparameter tuning was performed using optuna and manual search
to find a suitable configuration (i.e. flow and neural architectures, activations,
regularizations, extracted features, and optimizer settings).

4.2 Results

True and modeled ECM value distributions are shown in Fig. 1. All NF archi-
tectures are able to capture the value ranges of the ECM based on the unlabeled
dataset. Rigid value ranges and low correlations can be seen for the original data.
Distributions derived from DiagonalFlows and LinearFlows remain Gaussians,
whereas RealNVP and NSF are capable of modeling non-gaussian distributions.

Quantified evaluation results of the tuned NFs can be seen in Table 1. Look-
ing at 1D-KS and 2D-KS, DiagonalFlow performs best in replicating the original
distribution. RealNVP lead to the best CS, whereas LinearFlow generates the
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Evaluation Metric
Flow 1D-KS 2D-KS CS SLP

Diagonal 0.928 0.874 0.558 0.946
Linear 0.919 0.857 0.567 0.949
RealNVP 0.925 0.851 0.581 0.934
NSF 0.902 0.821 0.576 0.887

MAPE [%]
Train Set N Rs Re Ce

original 5000 5.74 0.27 14.2
generated 5000 5.76 0.45 17.5
generated 25000 3.52 0.33 14.3
generated 50000 3.47 0.30 12.4

Table 1: Left: Performances of adversarial NF architectures derived from comparing
the validation set with the same amount of generated measurements. Evaluation met-
rics have been scaled to [0, 1] with 1 being the best. Right: Mean Absolute Percentage
Error (MAPE) of Random Forests in predicting ECM values trained on original and
generated datasets with sample size N . Generated data is derived from LinearFlows
trained on the original data without labels.

best training data for supervised learning, which we have examined in more de-
tail in Table 1. The original data leads to superior predictions compared to the
same amount of generated data, whereas any number of training samples can be
generated. As the number of generated samples increases, the MAPE decreases
significantly, so that with a tenfold sample size, the predictions could be even
improved compared to the labeled original data for Rs (from 5.7% to 3.5%) and
Ce (from 14.2% to 12.4%), and brought to line for Re (0.27% and 0.30%).

4.3 Discussion

We show that various NFs, including state-of-the-art NSFs and RealNVPs, can
be used for physics-aware modeling using a physical ECM layer and adversarial
training. In contrast, classical NFs would not be able to model the underlying
quantities of interest. Since the generated samples follow the ECM, we get cer-
tainty about sample quality and compliance with the physical laws, as well as
real-world coverage through the feedback of the discriminator with access to a
dataset, without any prior knowledge about the true value ranges of the physi-
cal quantities. Finding suitable learning configurations through tuning remains
challenging, as multiple regularization techniques and batch-information are nec-
essary, which aligns to general observations of adversarial learning [9, 13, 10].

For our dataset, however, we recommend rather simple NFs like Diago-
nalFlow and LinearFlow as their capacities are sufficient and much easier to
train. This is especially true for the goal of training data generation for super-
vised learning, as generating some samples outside the original value ranges is
less bad than the risk of omitting entire regions. It is also worth noting that
our method trained on unlabeled data can generate a better-performing training
dataset than the original, including the omitted labels.

While ECMs already find diverse applications in engineering and medicine,
physics-aware adversarial learning extends to any domain featuring differen-
tiable, non-invertible forward models. Thanks to auto-differentiation in modern
deep learning frameworks, no explicit derivations need to be formulated.
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5 Conclusions and Outlook

With the present study, we have introduced a novel approach for physics-aware
NFs that incorporates the physical characteristics of a given electric circuit. We
have demonstrated the ability of this approach to effectively determine underly-
ing physical quantities of measurements and generate labeled training data. In
future work, the application of the presented method to more complex ECMs
and datasets, the embedding of physical forward models from other domains, as
well as its application to experimental measurements, will be of special interest.
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