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Abstract. Backpropagation-Free Graph Convolutional Networks (BF-
GCN) are backpropagation-free neural models dealing with graph data
based on Gated Linear Networks. Each neuron in a BF-GCN is defined
as a set of graph convolution filters (weight vectors) and a gating mech-
anism that, given a node’s context, selects the weight vector to use for
processing the node’s attributes based on its distance from a set of pro-
totypes. Given the higher expressivity BF-GNN’s neurons compared to
the standard graph convolutional neural networks’ ones, they show big-
ger memory footprint. In this paper, we explore how reducing the size of
node contexts through randomization can reduce the memory occupancy
of the method, enabling its application to huge datasets. We empirically
show how working with very low dimensional contexts does not impact the
resulting predictive performances.

1 Introduction

In the last years, the field of learning from graph data [1, 2] has seen signifi-
cant development, with Graph Neural Networks (GNNs) emerging as the pre-
ferred model for tackling graph-related problems.Backpropagation-Free Graph
Convolutional Networks (BF-GCNs) [3] have been recently proposed and shown
to provide predictive performances comparable to their backpropagation-based
counterparts. In contrast to the widespread GNNs, BF-GCNs present an alter-
native paradigm in the realm of graph neural networks, wherein the training
process does not rely on backpropagation. Each neuron in a BF-GCN is based
on a gating mechanism that divides the context space into regions. The model
then learns, for each region, a linear classifier. This mechanism allows train-
ing each neuron independently, without using back-propagation, resulting in a
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set of convex problems to solve. Different versions of BF-GCNs have been de-
fined [4]. One of the simplest and most effective instantiations defines regions
based on prototypes (initialized in a data-driven way), where each input context
is assigned to the closest prototype, obtaining a Voronoi tessellation of the con-
text space. The resulting model is as expressive as its backpropagation-based
counterpart, while offering a notably simplified training phase. Furthermore,
BF-GCNs are more parallelizable, as each neuron can be updated independently
after the forward pass. These features make BF-GCNs suitable for application
across various contexts, particularly on extensive datasets and complex tasks.
On the flip side, one of their main limitations when increasing the number of
regions of each neuron, is that the network requires a significant amount of mem-
ory. This limitation primarily stems from the gating mechanism embedded in
each neuron, specifically concerning the amount of memory needed to handle
the mechanism that shatter the context space. Indeed the storage requirements
are, for each region, the weight vector, and the prototype.

In this paper, we explore a simple method to significantly reduce the di-
mensionality of the prototypes affecting the memory occupancy (approximately
halving the memory footprint of the model), while slightly improving model ef-
ficiency and not impacting the predictive abilities of BF-GCNs. We propose a
specific simplification of the prototype-based gating mechanism, which relies on
mapping the context and prototypes to a smaller space, with the aim of effec-
tively reducing the memory demands of individual neurons within the model.

We experimentally show that, on datasets of increasing size, the predictive
performances of baseline GCNs and BF-GCNs are comparable. Moreover, we
show that the proposed improvement can provide improved predictive perfor-
mance while reducing the memory required to run a model.

2 Backpropagation-Free Graph Convolutional Networks

A learning problem on a graph can be formulated as learning a function mapping
nodes to labels. The graph structure is given as G = (V,E,L), where V =
{v1, . . . , vn} is the set of nodes, E ⊆ V × V is the set of edges, and L : V → Rs

is a function associating a vector of attributes to each node. We denote as
N (v) = {u | (v, u) ∈ E} the set of neighbors of a node v. To simplify the notation,
we define for a fixed graph G the matrix X = [L(v1), . . . ,L(vn)]⊺. Given a graph
G, our training set is composed by the target information associated with some
of the graph nodes, i.e., {(v, y) | v ∈ W, y ∈ Y} with W ⊂ V . For the sake of
simplicity, in our presentation, we will consider binary labels Y ∈ {0, 1}.

The definition of BF-GCNs in based on Gated Linear Networks (GLNs) [5].
The objective of GLNs is to construct a model comprising neurons that can be
trained locally, independently, and solely through task supervision. Each neuron
acts as an independent classifier, which can be trained separately from the rest
of the network given the input [6]. Recently, GLNs have been extended to graph
structured data [3], reminiscent of the definition of graph convolution [7, 8]. The
authors propose a generalization of the GLN mechanism in which the network

30

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



architecture reflects the structure of the input graph. Node representations are
refined at each layer based on the local graph topology through an aggrega-
tion operation over neighboring nodes. Specifically the authors introduce the
backpropagation-free version of GCN [9] which leads to the following definition
of a hidden layer of BF-GCN:
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In this paper, we focus on the gating mechanism utilized in the formulation
above, specifically the prototype-based approach introduced in [6]. Let us define
the context z associated to a node v as a vector, that can be for instance fixed to
the node label Lv or can be the hidden representation computed at the preced-
ing layer for the same node. The gating mechanism divides the input nodes in
subsets based on their context, splitting the context space in regions. Each node
will be mapped to the region its context belongs to. Each region will be associ-
ated to an independent weight vector, that will be learned during training. Each
region is characterized by a prototype, and each point in the space is assigned to
the region with the closest prototype, resulting in a Voronoi tessellation. Let us

consider a matrix P
(i)
j ∈ Rk×d(z)

of prototypes associated to the j-th neuron of

layer i. The context vector selection function c
(i)
(z) ∈ {0, 1}k can be formulated as:

c
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j,(z) = one hot(argminl(||p

(i)
j,l − z||), where p

(i)
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(i)
j and || · ||

is the 2-norm assessing the distance between p
(i)
j,l and context z. Given the pair

(x, z) as input, we select the weights of a single neuron j at the i-th layer (i.e.

the j-th row of W
(i)
(z)) as: w

(i)
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j c

(i)
j,(z). Notice that the main characteristic

of a Gated Linear Neuron is that, instead of having a single weight vector, each

GL neuron depends on a matrix of parameters W
(i)
j ∈ Rdi−1×k. When defining

the prototypes, it is crucial to consider the data distribution to ensures that each
prototype will lie on the input data manifold. A possible solution is to initialize
the gating mechanism in a data-driven way [3]. The policy consists in sampling

prototypes uniformly from the training set D(Tr), i.e. p
(i)
j,l ∼ U(D(Tr)) where

p
(i)
j,l is the l-th row of P

(i)
j and U(S) denotes the uniform distribution over the

elements of a finite set S.

3 Reducing context dimension with random projection

The core improvement we propose in this paper is to reduce the size of the stored
context vectors, thus reducing the memory footprint of the BF-GCN model. This
slight modification can provide an improvement in the model’s predictive perfor-
mance as well. If the contexts belong to an high dimensional space, due to the
course of dimensionality, the points essentially become uniformly distant from
each other [10]. This effect can occur with only 10-15 dimensions [11]. Reduc-
ing the dimensionality of the context space can thus improve the coherence of
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Dataset #Classes #Edges #Train #Val #Test

Pubmed 3 88,651 1829 3944 3, 944
WikiCS 10 216,123 7021 2340 2340
OGBN-prodcuts 47 61,859,140 195,922 48,981 2,204,126

Table 1: Datasets statistics. The columns #Train, #Val, and #Test report the
number of nodes in the training, validation and test sets, respectively.

examples falling in the same region. The literature indicates that random pro-
jection serves as an effective dimensionality reduction technique, yielding results
comparable to traditional methods like principal component analysis. Addition-
ally, utilizing random projections incurs in low computational costs [12]. The
utilization of random projection for reducing the dimensionality of data space
has demonstrated its suitability across various models and applications [13]. In
contrast to existing literature, our work employs dimensionality reduction not
to shrink the input space, but rather to enhance the memory efficiency of BF-
GCNs. In our experiments we initialize the random projection weights R(p)

using the Glorot uniform approach [14], inspired from recent randomized mod-
els on graphs [15]. We then apply the same weights to the prototype vectors

P
(i)
j and to the context z associated to each graph node, obtaining the following

context vector selection function c
(i)
j,(z) = one hot(argminl(||R(p)p

(i)
j,l −R(p)z||).

4 Results and Discussion

We empirically validated the proposed reduced-context-BF-GCN on three widely
adopted datasets for node classification of increasing size: Pubmed, WikiCS [16],
and OGBN-products [17]. We selected these datasets to assess the proposed
approach across diverse graphs of varying size and complexity. Relevant statistics
on the datasets are reported in Table 1. To asses the classification capability
of the BF-GCNs we opted for the classification accuracy, since it is the most
common choice for the benchmark dastsets we considered. We also evaluate
the model performances in terms of memory consumption and time complexity.
We performed our experiments on a G2 Google cloud machine with 12 vCPUs,
48GBs of RAM and an Nvidia L4 GPU with 24GB of video memory.

Let us start our analysis focusing on the Pubmed and WikiCS datasets.
Here we limit the number of layers to 2 since it has been shown that increasing
them did not result in any accuracy gain [4]. Consequently, we could validate
a higher number of prototypes per neuron (from 2 up to 32), since increasing
each neuron’s non-linearity can be beneficial. In Tables 2a and 2b we show
the performance and memory footprint of: the GCN model trained with back-
propagation; the BF-GLN method (with no context dimensionality reduction
applied) in the column Full Context ; the proposed reduced-context-BF-GCN
with different context sizes in the remaining columns. The proposed reduced-
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Model/Context Size Full Context 2 4 8 16 32

GCN (2,48,-) 88.5±0.3 - - - - -

Memory 390MB - - - - -

BF-GCN (2,4,4) 87.2±0.2 87.3±0.4 87.3±0.4 87.2±0.3 87.1±0.2 87.1±0.3

Memory 752MB 316MB 316MB 316MB 316MB 336MB

(a) Accuracy results on the Pubmed dataset.

Model/Context Size Full Context 2 4 8 16 32

GCN (1,64,-) 81.6±0.7 - - - - -

Memory 634 MB - - - - -

BF-GCN (2,4,32) 82.2±0.8 82.1±1.0 82.3±1.0 82.5±1.0 82.3±0.5 82.5±0.7

Memory 175 MB 81MB 81MB 81MB 81MB 81MB

(b) Accuracy results on the WikiCS dataset.

Model/Context Size Full Context 4 8

GCN (3,192,-) 75.5±0.2 -

Memory 21GB - -

BF-GCN (3,4,4) 73.7±0.2 75.7±0.5 75.0±0.5

Memory 19GB 11.9GB 12GB

(c) Accuracy results on the OGBN-products dataset.

Table 2: Accuracy on Pubmed (a), WikiCS (b) and OGBN-products (c) of the
baseline GCN, BF-GCN and reduced-context-BF-GCN with different context
sizes. We report the following hyperparameters: (#layers, #hidden, #contexts).

context-BF-GCN does not deteriorate the BF-GCN’s predictive performances,
and even extremely small context sizes give only a slight loss in accuracy. More-
over, the memory footprint of the BF-GCN is smaller compared to GCN, and
it is further reduced by the proposed method. Let us now focus on the bigger
OGBN-products dataset in Table 2c, in which the hyperparameters grid was
more limited due to memory constraints. In fact, the best GCN model ex-
ploits almost all the available video memory. BF-GCN, with a similar memory
footprint, achieves slightly lower predictive performance. Applying randomized
context dimensionality reduction, we not only reduce the memory footprint, but
also improve over the BF-GCN predictive performance, matching GCN’s one.

Considering the computational times, we focus on OGBN-Products since for
the other datasets the time required to perform a single epoch was too small to
appreciate differences (< 1

100s). The GCN requires on average 3.67 seconds per
epoch. BF-GCN with full context requires 0.36 seconds per epoch for each class
in a one-vs-rest approach. Our proposed BF-GCN with randomized contexts,
considering for instance context size of 8, requires 0.27 seconds per epoch.

5 Conclusions and Future Works

In this paper, we proposed an improvement of the Backpropagation-free GCN
model based on reducing the dimensionalty of context vectors. We show the pro-
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posed modification in beneficial from the memory requirements and predictive
performances points of view. As a future work, we will study a version of BF-
GCN that can handle multiple classes at the same time, without resorting to the
one-vs-rest approach. This strategy is aimed at reducing the number of model
neurons required, thereby further diminishing the model’s memory footprint.

——————
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