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Abstract.

In various domains requiring general knowledge and agent reasoning, tra-
ditional reinforcement learning (RL) algorithms often start from scratch,
lacking prior knowledge of the environment. This approach can lead to sig-
nificant inefficiencies as agents sometimes undergo extensive exploration
before optimizing their actions. Conversely, in this paper we assume that
recent Vision Language Models (VLMs), integrating both visual and tex-
tual information, possess inherent knowledge and basic reasoning capabil-
ities, offering potential solutions to the sample inefficiency problem in RL.
The paper explores the integration of VLMs into RL by employing a robust
VLM model, Idefics-9B, as a policy updated via Proximal Policy Optimiza-
tion (PPO). Experimental results on simulated environments demonstrate
that utilizing VLMs in RL significantly accelerates PPO convergence and
improves rewards compared to traditional solutions. Additionally, we pro-
pose a streamlined modification to the model architecture for memory
efficiency and lighter training, and we release a number of upgraded en-
vironments featuring both visual observations and textual descriptions,
which, we hope, will facilitate research in VLM and RL applications. Code
is available at: https://github.com/giobin/VlmPolicyEsann24

1 Introduction

Reinforcement learning (RL) agents’ policies are usually learned from scratch
and updated according to the rewards from the environment [1]. However in
situations requiring agent’s reasoning and planning abilities, algorithms starting
from a tabula rasa state initiate a exploration-exploitation loop: the agent must
first learn the rules of the environment (exploration) and then use the acquired
knowledge to maximize its own advantage (exploitation). The successful training
of RL agents often relies on handcrafted reward functions which allow agents to
receive immediate reward signals. Sparse rewards can instead result in low sam-
ple efficiency [2, 3, 4]. A recent successful approach to get better sample efficiency
exploits Large Language Models (LLMs) in RL. LLMs demonstrated significant
success in natural language generation and understanding [5, 6], also thanks to
the knowledge they make accessible through language. Recent studies show that
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the huge amount of data used for their training is beneficial for the emergence of
basic reasoning skills and the creation of simple action plans [7], even if the data
is not related to a specific task. Turns out that models can play sophisticated
games such as TextWorld [8], Handbi [9], and MineCraft [10], without specific
additional information available. Also the well known misalignment issues [11],
which sometimes cause LLMs’ failure in solving simple decision-making tasks,
can be effectively addressed by leveraging RL to align LLMs with embodied
environments [12, 13].

While LLMs are being successfully integrated in RL scenarios, their input
remain textual, which requires to convert visual content from the environment
into complex language descriptions, sometimes too elaborated to be effectively
exploited. A step forward would be to take advantage of a visual model to jointly
use the textual description and the visual content of the environment. Accord-
ingly, the contribution of this paper is threefold: firstly we use Idefics-9B [14], a
recent Visual Language Model (VLM) whose component of visual knowledge is
exploited for solving the FrozenLake gymnasium environment and some typical
procedurally-generated minigrid games. Besides, we propose a straightforward
method to adapt the model’s architecture in order to save memory and stream-
line training, and we release some enhanced environments that incorporate not
only visual data but also their textual descriptions in English.

2 Our Method

We assume a Reinforcement Learning scenario [1] formulated as a Markov Deci-
sion Process (MDP) [15] defined by the tuple (S,A, T,R, γ), where S is the state
space, A the action space, T the transition dynamics, R the reward function and
γ the discount scalar. In this context our first contribution is to create an agent
which acts following a policy π̂ generated by the underlying VLM that needs
to maximize the expected cumulative reward. We train and test our agent in
embodied gridworld-like environments, where it needs to plan and act to achieve
a specific goal provided by the game. The environment simulators follow the
Gymnasium API [16] and provide at each timestep t a textual description yt
of the current state (e.g., what the agent sees, if it is carrying an object, what
the goal is, etc...) and a RGB visual observation xt of the same view. Such
information is organized in prompts and fed to the model so that it can choose
how to proceed, selecting one action αi ∈ A = {α1, ..., αi, ..., αn}. Each action
αi has a textual description ai, where ai is the sequence of tokens {wi

0
, .., wi

|ai|
}.

The training loop is performed using the PPO algorithm [17], which aims to
concurrently optimize a policy π̂ : S → P(A) and a value function V̂ : S → R.
We introduce a value head on top of the last VLM’s hidden state and use the
(log)-likelihood of the action tokens as policy. Using a VLM as a policy net-
work in PPO requires the model to generate a probability distribution over the
possible actions in the environment. We formulate this problem as a multi-
class classification task in which the model, for every time step t, has to choose
among different prompts, each tailored to a specific action. Each prompt sit
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Fig. 1: Prompt example.

(hereon we will omit the time-step suffix for brevity) is made by concatenating
two templates:

• the state prompt P = {p0, ..., pk}. A general fixed text template populated
by the game state descriptors yt and xt, i.e. the Textual descriptor and
the Visual observation.1

• the action prompt Q = {q0, ..., qz}. A general fixed text template popu-
lated by one specific action description ai.

The VLM is fed with each prompt and outputs the logit mean of the prompt as
the average of the token logits that compose it. The log-likelihood of ai, is:

logP(ai|P,Q) =

|ai|
∑

j=0

logP(wi
j |P,Q,wi

<j) (1)

The softmax normalization of logP(ai|P,Q) provides a valid probability distri-
bution over the action set A.

To compute the state value, we add a value head, a simple multilayer per-
ceptron with one output, on top of the last token in the state prompt. The
primary advantage of using Eq.(1) is that the agent can exploit the language
and visual backbones’ priors of the VLM and its implicit knowledge about the
world. For example, if the agent in a given game state has a death cell on his
right, we argue that, due to the huge amount of pre-training data, the VLM has
learnt to avoid bad states and consequently will output a higher logit for going
left, instead of falling to death. A downside of Eq.(1) is that it requires to feed
the model with a mini-batch composed of as many prompts as the number of
actions. This can quickly lead to memory issues as the number of actions or the
prompt lengths increase. As a countermeasure we use LoRA [18] paired with

1
xt is not a sequence of tokens, but rather a 3D tensor. Nonetheless it is transformed into

a sequence of feature tokens within the model’s forward pass and interleaved with the text
content.
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model quantization techniques: so doing we reach the goal of saving memory
and perform faster trainings.

We load the model with int4 quantization using BitsAndBytes 2, and freeze
its parameters during training. The 80 millions trainable weights are the LoRA
injected layers, which counts for the 0.87% of the total plus the negligible value
head. This setup allows us to parallelize our trainings on four A40 (65GB) GPUs,
fitting one syncronized instance of the model in each of them. The parallelization
and the synchronization of the gradients among the instances is managed by the
Accelerate library 3.

3 Experiments and Results

Environments. The agents are trained in two typical procedurally-generated
grid environments:

Frozenlake. [16] The agent is spawned in the upper-left corner of a 8x8 grid
world and needs to reach the goal located to the bottom-right corner. In order
to win the episode, the agents must avoid falling into the icy ponds randomly
scattered on his way. The episodic reward is 1 if the agent reaches the goal safely,
otherwise the rewards is always 0. This environment comes with 4 possible
actions: move-{west/south/east/north}. Minigrid & BabyAI. [19, 20] The
agent is spawned in a random location and needs to complete a specific task
described in plain text. In MiniGrid-Fetch the agent is surrounded by items
of different types and colors and must pick up a specific item. In BabyAI-

GoToRedBallGrey the agent has to pick up the red ball and the grid is populated
with useless items which acts as visual and textual distractors. Both games
have the following possible actions: move-{forward/left/right/back} and pick
up. The reward function is also the same: 0 for picking up the wrong item,
otherwise 1− 0.9(Tτ/Tmax), where Tτ and Tmax are the number of steps of the
episode and the maximum number of steps, respectively.

All the considered environments have sparse rewards. This is known to be
a challenge since the agent gets a positive feedback only when it successfully
achieves the goal. Since these simulators come with no textual description of
the game state, as a paper contribution, we design rule-based scripts to convert
the symbolic representation of a scene into a english textual description, which
we hope to be useful for research purposes in the field of RL with VLM systems.

Results. We compare our system called Idefics-Agent with: Idefics (the non
PPO-finetuned version), a commonly used CNN baseline adapted from CleanRL
[21] finetuned with PPO, called CNN-Agent, and the Random-Agent which acts
randomly in the environments (see figure 2). Experiments are repeated with
three different seeds as done in recent similar works [12, 13].

Our experiments are designed to answer three questions:
1) Is a VLM able to achieve better performance than a solution

2https://github.com/TimDettmers/bitsandbytes
3https://huggingface.co/docs/accelerate/index
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Fig. 2: Idefics-Agent vs CNN-Agent for the three environments. Average models’
performance with standard deviations bands is shown.

starting from a tabula-rasa state? The plots show that Idefics-Agent sur-
passes CNN-agent and Random-Agent in terms of mean reward and needs less
experience to learn: 100k steps are enough to show convergence on a good policy
for all the environments. The CNN-Agent, on the other hand, does not converge
in any of them with the same amount of experience. As previously mentioned,
our environments, although requiring simple skills to be solved like reaching an
object or avoiding death states, are challenging for their sparse reward settings.
Tabula-rasa methods, as the CNN we used, may have to explore massively before
reaching a positive reward state, and are therefore penalized.

2) Is the VLM’s implicit knowledge important for performance?

Comparing Idefics with the Random-agent we see that, even without training,
Idefics acts better than a random policy, reaching higher expected returns. We
manually experimented with different state and action template pairs and saw
that (“I am the agent in this minigrid world. {} What’s the next best action?”,
“Based on the information provided, the next best action would be to {}”)4 is
already enough to elicit good action biases. In this phase of our study we haven’t
extensively searched for the best template.

3) Is the PPO training necessary to align the VLM on decision-

making environments? Comparing Idefics-Agent with Idefics (i.e. without
PPO finetuning) we see that the latter does not have all the skills required to
solve the environments, which proves PPO finetuning to be necessary to have
strong performance. Note that Idefics is comparable to the CNN-Agent with
100k steps of training, at least in GoToRedBallGrey and Fetch environments.

4 Conclusions

In this work we showed how to use a strong VLM, Idefics-9B, as a learning policy
in interactive reinforcement learning environments. We tested our Idefics-Agent
on different environments that we augmented to provide textual observations

4The {} within the templates indicate where the observations and actions, for value and
action template respectively, are injected.
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besides visual ones. Furthermore, we modified the architecture of the model for
a light and efficient PPO training utilizing LoRA and quantizations. Finally we
showed strong results in terms of rewards and sample efficiency, supporting the
hypothesis that it is indeed possible to build on VLM’s latent knowledge to take
decision-making scenarios. Delving deeper in aspects related to VLM vs LLM
specific knowledge will be addressed as future work as well learning the mapping
from state and action descriptions to appropriate prompts.
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